88教案网

你的位置: 教案 > 高中教案 > 导航 > 人教版高中物理必修二《向心力》教学反思

高中物理必修二教案

发表时间:2020-09-09

人教版高中物理必修二《向心力》教学反思。

经验告诉我们,成功是留给有准备的人。作为教师准备好教案是必不可少的一步。教案可以让学生更容易听懂所讲的内容,有效的提高课堂的教学效率。那么,你知道教案要怎么写呢?小编收集并整理了“人教版高中物理必修二《向心力》教学反思”,相信您能找到对自己有用的内容。

人教版高中物理必修二《向心力》教学反思

关于《向心力》这节课,我上了一堂公开课。我本着给学生讲简单,易于学生理解和掌握的原则。Jab88.CoM

因此,我是这样处理的:先复习向心加速度的大小和方向,紧接着出一道思考题,即上一节的第四题,情景引出:两艘游艇的向心加速度是怎样产生的?这节课就来学习与这个问题息息相关的知识—向心力;展开新课,向心力概念→矢量性(大小和方向)→向心力来源→用圆锥摆实验粗略验证向心力公式。

本来还设计了变速圆周运动和一般曲线运动的讲解,但考虑到学生对向心力是效果力这一难点的透彻理解,这点需要的时间比较多,就没有把设计的都讲完。从第二节课的情况看,学生的掌握情况良好。当然,还有诸多值得我反思的地方:

1、过高评价学生。设计教学环节时,有些我预设认为简单的问题在学生看来,不能很快到位的理解,这也是这堂课没按设计讲完的一个原因。

2、关于向心力是效果力。为了降低难度,我先引用了学生很容易理解的动力和阻力是效果力,粉笔头做竖直上抛运动时,重力是阻力;粉笔头竖直下落时,重力是动力。当物体做匀速圆周运动时,想要实现这种效果,要有指向圆心的力。其它力的合力提供这种效果,那么这些力的合力就是向心力,因此向心力是效果力;这点处理我个人比较满意。当然也许存在不妥之处,愿与大家共同讨论。

3、图画的有些小。图画的大点,受力分析会更直观。

相关知识

“向心力”教学设计


一般给学生们上课之前,老师就早早地准备好了教案课件,规划教案课件的时刻悄悄来临了。在写好了教案课件计划后,这样我们接下来的工作才会更加好!你们会写多少教案课件范文呢?小编特地为您收集整理““向心力”教学设计”,希望对您的工作和生活有所帮助。

一、教学内容分析

向心力是物体做匀速圆周运动时所受到的合外力,它是本章圆周运动的重点。由于这一节内容比较多,可分为两个课时,第一课时讲述有关向心力的概念,第二课时是生活中向心力的应用实例,而本--是第一课时有关向心力的概念。本节课的教学重点和难点是学生如何建立向心力的概念,为了使学生容易接受,教材采取以实验为基础加上必要的简单的理论分析的方法,在这里,编者增加了一个演示实验,就是借助向心力演示器进行实验,把学生的实验结论逐一验证,从而验证了向心力公式,更有力说明了实验的科学性和重要性。课本35页中的“讨论与交流”这一点学生往往觉得抽象,只是理论来分析,这里编者把它改成实验探究,这样学生通过实验亲身感受,定性分析,这比理论分析更具有说服力。

二、教学对象分析

在前面的教学中,学生已经学习了匀速圆周运动,对匀速圆周运动有了一定的理解。知道描述匀速圆周运动快慢的物理量有线速度、角速度、周期、转速等,并理解线速度、角速度、周期、半径之间的关系。学生知道在转动装置中,共轴的轮子上各点的角速度相等;皮带转动(不打滑)中,凡和皮带接触的点,线速度的大小相等。这些都为本节课的学习奠定了基础。学生知道匀速圆周运动是一种变速运动,因为它的线速度方向时刻在变,但只是表面的知道,更深一步来分析,为什么线速度的方向时刻在变?是什么力来改变物体的这种运动状态,这个力有何特点?学生带着这些疑问来进入本节课的学习。

三、--思想及策略

在以往的教学中,课堂教学实施往往过于注重知识传授倾向,老师满堂灌,学生被动的接受,很难从多方面培养学生的综合素质。而新课程强调“将学习的重心从过分强调知识的传承和积累向获取知识的探究过程转化,从学生被动接受知识向主动获取知识转化,从而培养学生的探究能力、实事求是的科学态度和敢于创新的精神”。为此本--和教学实施就是采用学生实验探究和教师演示实验相结合的实验探究教学法。

本节首先通过日常生活经验和观察中的两个实例,提出问题,加上老师的即时演示实验,其现象更加深学生心中的疑惑,激发他们求知探索的欲望,更易引起学习的兴趣。然后学生亲身进行实验探究来感受向心力。当学生对向心力的概念有了一定的认识后,就进一步提出向心力的大小与哪些因素有关呢?可以先让学生根据前述实验做出猜想,然后再让学生设计实验对猜想进行验证,教师可以按照教材的设计指导学生完成,进一步强化学生对向心力的感性认识。教师还借助了向心力演示器进行实验,把学生的实验结论逐一验证,从而验证了向心力公式。接着运用牛顿第二定律,给出向心加速度的公式,让学生明白匀速圆周运动的向心力和向心加速度的大小不变,但方向时刻在改变。最后把课本35页的“讨论与交流”改成实验探究,这样学生通过实验亲身感受,定性分析,这比理论分析更具有说服力。

本节课的教学重点和难点是学生如何建立向心力的概念,而突破这一点的办法是让学生进行探究实验,让学生亲身感受,获得感性认识。由于本节课学生实验探究活动比较多,教学中老师需根据学生的实际能力去引导学生进行实验,必要时做出指导。实验中提倡学生敢于动手,严谨、细致、耐心的进行实验,观察实验现象并能分析,小组之间讨论与交流,归纳结论。本节课以实验探究为主线,以问题和小组交流贯穿课堂的始终,把传授知识、培养能力和学生情感有机的结合起来。

四、教学目标及教学重点、难点

知识与技能

1.理解向心力的概念。

2.知道向心力大小与哪些因素有关,理解公式的含义。

3.理解向心加速度的概念,结合牛顿第二定律得出向心加速度的公式。

过程与方法

1.通过实验,体验和感受做匀速圆周运动的物体需要向心力。

2.先猜想影响向心力大小的因素,再进行实验探究。

3.通过演示实验,验证匀速圆周运动的向心力公式,结合牛顿第二定律得出向心加速度的公式。

情感态度与价值观

1.通过亲身的探究活动,使学生获得成功的乐趣,培养学生参与物理活动的兴趣。

2.培养学生对科学的求知欲,乐于参与观察,敢于实验,体会实验在探索物理规律中的作用和方法。

3.培养学生事实求是、尊重客观规律的科学态度,养成严谨、细致、耐心的实验修养。

教学重点

1.理解向心力的概念。

2.学生实验探究:感受向心力和影响向心力大小的因素。

教学难点

理解向心力的概念。

五、教法学法

学生实验探究,教师演示实验相结合;学生思考、猜想、讨论,教师提问、讲解相结合。

六、教学用具和课时安排

质量不同的小物体(钢球、木球)、小绳、圆珠笔杆、向心力演示器、圆环轨道、CAI课件、多媒体投影设备。

课时安排1课时。

七、教学流程图

八、教学过程

教学

环节

教学内容及教师组积活动

学生主体活动

设计意图及说明

情景

设疑

引入

新课

1.同学们跑步转弯时,身体会自然的怎么样?(例如4*100米接力赛)

2.在湿滑的水泥路上转弯时,无论是骑自行车还是驾车,必须怎么办?

3.教师演示:把小球在不同的高度沿着斜面轨道滚下时,观察通过圆环运动的情况。(例如娱乐场所里玩“过山车”游戏)你知道其中的奥秘吗?物体做圆周运动的条件是什么?这就是我们这一节课要探究的问题了。

1.由于学生对前面的两个问题有很丰富的日常经验,会大胆发言。

2.观察实验现象,对现象和老师提出的问题进行思考,产生悬念。

从日常生活情景中构建物理情景,以培养学生把生活与物理联系一起的习惯,特别是演示实验的现象,使学生产生悬念,激发好奇心和探索欲望。

教师指导学生做课本实验,提出问题:1.你牵绳的手有什么感觉?2.如果增大或减小小球的线速度,手的感觉有何变化?3.如果松手,将会发生什么现象?4.小球匀速圆周运动受到哪些力的作用?合外力是哪个?这个力起什么作用?

学生亲身进行实验探究,然后小组讨论交流,归纳结论,回答老师的提问。

这实验简单易做,效果明显,学生通过亲身感受使学生获得成功的乐趣,实际教学效果表明学生乐于参与观察,敢于实验。

1.承上启下,引出向心力的概念:维持物体做匀速圆周运动需要一个指向圆心的力的作用,这个力就叫向心力。

2.配合演示动画片。

3.教师强调:使物体做匀速圆周运动的向心力只是合外力,并不是真正受到的力;向心力的作用只是改变速度的方向,不改变速度的大小。(举例对比:F与V同一直线时,F对V的作用)

引导学生回答物体做匀速圆周运动的条件。

学生观察、思考、回答、理解、记录。

向心力的概念是本课的难点,加上新教材没有明确向心力的概念,教师应深入浅出地做出理论分析,使学生容易接受。

1.教师提出问题:向心力的大小与哪些因素有关?

2.引导学生设计实验并对猜想进行验证。

学生根据前面的实验作出猜想,一般学生都会各抒己见,大胆发表自己的猜想。最后师生共同讨论,得出实验探究的方案。

学生经历了“提出问题→猜想与假设→设计实验→实验探究→分析与论证→交流与合作→得出结论”等一系列过程,亲身体会到科学探究的过程

教师演示动画片,让学生知道怎样使用器材探究。同时明确:细绳的拉力提供圆周运动所需的向心力。注意用牵细绳的手的感觉来判断向心力的大小。教师强调实验时要注意安全。

用先前准备的空心圆珠笔杆和实验室配备的带小绳的铁球、木球。

学生按照先前设计的方案进行实验与探究,对猜想进行验证。实验后小组内互相交流感受,进行分析、讨论、总结结论:(1)当m、相同时,r越大F越大。(2)当m、r相同时,越大F越大。(3)当、r相同时,m越大F越大。

培养学生养成严谨、细致、耐心的实验修养。

教师先介绍向心力演示器的结构和使用方法,然后进行如下操作如下:

(1)用质量比为2:1的钢球和铝球,使他们运动的半径r和相同,观察得到露出的红白相间方格数比值为2:1,即两个球所受向心力的比值也为2:1,因此F与m成正比。

(2)当m、相同时,半径比为2:1,向心力的比值也为2:1,因此F与r成正比。(3)当m、r相同时,比值为2:1,向心力的比值为4;1,因此F与2成正比。

教师由此验证向心力大小的公式:F=mr2

学生观察、思考、分析,然后根据推导向心力的另一表达式。

培养学生事实求是、尊重客观规律的科学态度,让学生体会到实验在探索物理规律中的作用和方法。

引出

向心

加速

度的

概念

做圆周运动的物体,在向心力F的作用下必然要产生一个加速度,根据牛顿第二定律得到:这个加速度的方向与向心力的方向相同,所以称为向心加速度。(对比:直线运动中的加速度与向心加速度的区别。)

学生结合牛顿第二定律得到:

让学生明白匀速圆周运动的向心力和向心加速度的大小不变,但方向时刻在改变。所以匀速圆周运动又是一种变速运动。

看课本35页的“讨论与交流”,引导学生从公式和转换成公式F=mr2和进行探究:同一物体做匀速圆周运动时,当半径比较大时,向心力比较大还是比较小?教师引导学生探究实验,如图示:

其中小球分别到绳结A、B的距离比为2:1。引导学生手握绳子,使小球在水平方向做匀速圆周运动,请另一位学生帮助:看着手表,每秒钟喊2次口令。

操作一:手握绳结A,手握绳子,使小球每2次口令运动1周,即每秒1周。

操作二:改为手握绳结B,仍使小球每秒运动1周。

操作三:又改为手握绳结A,但使小球每秒钟运动2周。

以上3次实验学生注意体会绳子拉力的大小。

师生共同归纳:操作一与操作二m、相同,但r越大F就越大。操作二与操作三m、v相同,但r越小反而F就越大。

学生对课本35页的“讨论与交流”往往有点迷糊,难以理解。现在能通过实验亲身感受,定性分析,学生才确信真理,这比理论分析更有说服力。

举一反三,即从公式看,当一定时,a与r成正比;从公式看,当v一定时,a与r成反比。

总结与

作业

1.对本节课内容进行小结。

2.作业:练习课本37页习题1、2

学生知识回顾

巩固所学的知识

检测所学的知识

九、教学反思

上完这节课后,从整个课堂活动中看,学生很喜欢老师多举一些生活的实例,能大胆发言。比如教师情景设疑导入新课,强烈的激发学生好奇心和探索欲望,课堂气氛非常好;教师叫学生猜想时,他们都很活跃,各抒己见。在课堂中,学生实验探究活动比较多,但他们的积极性很高,每个学生都在“玩”那个带绳子的小球。就这样,这节课就在学生的探究性活动中结束了,学生通过亲自动手,亲身感受,在这“玩”当中获得了成功的愉悦,这种充分发挥学生的主体地位和以学生为主的探究实验课,比老师讲和做好得多,达到了事半功倍的效果!

本节课的难点是如何建立向心力的概念,特别是让学生理解向心力并不是物体真正受到的力,这一点比较抽象,教师应注意把握语言的简练,深入浅出的加以说明。由于整堂课探究实验较多,要注意控制好时间,如果时间确实不够,可以课堂练习一些题目,把最后的探究实验留在课后“做一做”。

十、课后点评

本--和教学实施都落实了高中物理新课程的目标要求,体现了新课程的精神,采取“学生自主探究,教师启发导学”的新教法,充分调动学生自主学习,让学生自主探究。本--让学生经历了“提出问题→猜想与假设→设计实验→实验探究→分析与论证→交流与合作→得出结论”等一系列过程,亲身体会到科学探究的过程。通过实验探究,让学生人人参与,亲身体验探究过程,活跃学生思维,并在探究中突破教学难点。教师结合演示实验,同时充分利用“多媒体课堂辅助教学资料库”的教学课件,使课堂的教学效果大大提高。这是一节科学的、操作性很强的--案例。

5.6向心力学案(人教版必修2)


5.6向心力学案(人教版必修2)
1.做匀速圆周运动的物体具有向心加速度,产生向心加速度的原因一定是物体受到了指
向________的合力,这个合力叫做向心力.向心力产生向心加速度,不断改变物体的速
度________,维持物体的圆周运动,因此向心力是一种________力,它可以是我们学过
的某种性质力,也可以是几种性质力的________或某一性质力的________.
2.向心力大小的计算公式为:Fn=________=________,其方向指向________.
3.若做圆周运动的物体所受的合外力不沿半径方向,可以根据F产生的的效果将其分
解为两个相互垂直的分力:跟圆周相切的____________和指向圆心方向的____________,
Ft产生________________________,改变物体速度的________;Fn产生_____,改变物
体速度的________.仅有向心加速度的运动是________________,同时具有切向加速度
和向心加速度的圆周运动就是________________.
4.一般曲线运动
运动轨迹既不是________也不是________的曲线运动,可称为一般曲线运动.曲线运动
问题的处理方法:把曲线分割成许多极短的小段,每一段都可以看作一小段________,
这些圆弧上具有不同的________,对每小段都可以采用____________的分析方法进行处
理.
5.关于向心力,下列说法中正确的是()
A.物体由于做圆周运动而产生一个向心力
B.向心力不改变做匀速圆周运动物体的速度大小
C.做匀速圆周运动的物体的向心力是恒力
D.做一般曲线运动的物体的合力即为向心力
6.如图1所示,
图1
用细绳拴一小球在光滑桌面上绕一铁钉(系一绳套)做匀速圆周运动,关于小球的受力,
下列说法正确的是()
A.重力、支持力
B.重力、支持力、绳子拉力
C.重力、支持力、绳子拉力和向心力
D.重力、支持力、向心力
7.甲、乙两个物体都做匀速圆周运动,其质量之比为1∶2,转动半径之比为1∶2,在
相同的时间里甲转过60°,乙转过45°,则它们的向心力之比为()
A.1∶4B.2∶3C.4∶9D.9∶16
【概念规律练】
知识点一向心力的概念
1.下列关于向心力的说法中正确的是()
A.物体受到向心力的作用才能做圆周运动
B.向心力是指向弧形轨道圆心方向的力,是根据力的作用效果命名的
C.向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是某一种力或某一种力
的分力
D.向心力只改变物体运动的方向,不改变物体运动的快慢
2.关于向心力,下列说法正确的是()
A.向心力是一种效果力
B.向心力是一种具有某种性质的力
C.向心力既可以改变线速度的方向,又可以改变线速度的大小
D.向心力只改变线速度的方向,不改变线速度的大小
知识点二向心力的来源
3.如图2所示,
图2
一小球用细绳悬挂于O点,将其拉离竖直位置一个角度后释放,则小球以O点为圆心做
圆周运动,运动中小球所需向心力是()
A.绳的拉力
B.重力和绳拉力的合力
C.重力和绳拉力的合力沿绳的方向的分力
D.绳的拉力和重力沿绳方向分力的合力
4.如图3所示,
图3
有一个水平大圆盘绕过圆心的竖直轴匀速转动,小强站在距圆心为r处的P点不动,关
于小强的受力,下列说法正确的是()
A.小强在P点不动,因此不受摩擦力作用
B.小强随圆盘做匀速圆周运动,其重力和支持力充当向心力
C.小强随圆盘做匀速圆周运动,盘对他的摩擦力充当向心力
D.若使圆盘以较小的转速转动时,小强在P点受到的摩擦力不变
知识点三变速圆周运动
5.如图4所示,
图4
长为L的悬线固定在O点,在O点正下方L2处有一钉子C,把悬线另一端的小球m拉到
跟悬点在同一水平面上无初速度释放,小球到悬点正下方时悬线碰到钉子,则小球的
()
A.线速度突然增大
B.角速度突然增大
C.向心加速度突然增大
D.悬线的拉力突然增大
【方法技巧练】
一、向心力大小的计算方法
6.一只质量为m的老鹰,以速率v在水平面内做半径为R的匀速圆周运动,则空气对
老鹰作用力的大小等于()
A.mg2+(v2R)2B.m(v2R)-g2
C.mv2RD.mg
7.在双人花样滑冰运动中,有时会看到男运动员拉着女运动员离开冰面在空中做圆锥摆
运动的精彩的场面,目测体重为G的女运动员做圆锥摆运动时和水平冰面的夹角为30°,
重力加速度为g,估算该女运动员()
A.受到的拉力为3GB.受到的拉力为2G
C.向心加速度为3gD.向心加速度为2g
二、匀速圆周运动问题的分析方法
8.
图5
长为L的细线,拴一质量为m的小球,一端固定于O点.让其在水平面内做匀速圆周
运动(这种运动通常称为圆锥摆运动),如图5所示.当摆线L与竖直方向的夹角为α时,
求:
(1)线的拉力F;
(2)小球运动的线速度的大小;

(3)小球运动的角速度及周期.

参考答案
课前预习练
1.圆心方向效果合力分力
2.mv2rmω2r圆心
3.分力Ft分力Fn沿圆周切线方向的加速度大小指向圆心的加速度方向匀速圆周运动变速圆周运动
4.直线圆周圆弧半径圆周运动
5.B[由向心力的概念对各选项作出判断,注意一般曲线运动与匀速圆周运动的区别.
与速度方向垂直的力使物体运动方向发生改变,此力指向圆心命名为向心力,所以向心力不是物体做圆周运动而产生的.向心力与速度方向垂直,不改变速度的大小,只改变速度的方向.做匀速圆周运动的物体的向心力始终指向圆心,方向在不断变化,是个变力.做一般曲线运动的物体的合力通常可分解为切向分力和法向分力.切线方向的分力提供切向加速度,改变速度的大小;法线方向的分力提供向心加速度,改变速度的方向.正确选项为B.]
6.B[向心力是效果力,可以是一个力,也可以是一个力的分力或几个力的合力.]
7.C[由匀速圆周运动的向心力公式Fn=mrω2=mr(θt)2,可得F甲F乙=m甲r甲(θ甲t)2m乙r乙(θ乙t)2=12×12×(60°45°)2=49.]
课堂探究练
1.ABCD[向心力是使物体做圆周运动的原因,它可由各种性质力的合力、某一个力或某一个力的分力提供,方向始终从做圆周运动的物体的所在位置指向圆心,是根据力的作用效果命名的,只改变线速度的方向,不改变线速度的大小.]
2.AD[向心力是按力的作用效果命名的,是一种效果力,所以A选项正确,B选项错误;由于向心力始终沿半径指向圆心,与速度的方向垂直,即向心力对做圆周运动的物体始终不做功,不改变线速度的大小,只改变线速度的方向,因此C选项错误,D选项正确.]
点评由于向心力是一种效果力,所以在受力分析时不要加上向心力,它只能由其他性质的力提供.
3.CD[
如图所示,对小球进行受力分析,它受重力和绳的拉力,向心力由指向圆心O方向的合外力提供,因此,它可以是小球所受合力沿绳方向的分力,也可以是各力沿绳方向分力的合力,故选C、D.]
4.C[由于小强随圆盘一起做匀速圆周运动,一定需要向心力,该力一定指向圆心方向,而重力和支持力在竖直方向上,它们不能充当向心力,因此他会受到摩擦力作用,且充当向心力,A、B错误,C正确;由于小强随圆盘转动的半径不变,当圆盘角速度变小时,由Fn=mrω2可知,所需向心力变小,故D错误.]
点评对物体受力分析得到的指向圆心的力提供向心力.向心力可以是某个力、可以是某几个力的合力,也可以是某个力的分力.
在匀速圆周运动中,向心力就是物体所受的指向圆心方向的合外力.在变速圆周运动中,物体所受合外力一般不再指向圆心,可沿切线方向和法线方向分解,法线方向的分力就是向心力.
5.BCD[悬线与钉子碰撞前后瞬间,线的拉力始终与小球的运动方向垂直,不对小球做功,故小球的线速度不变.当半径减小时,由ω=vr知ω变大,再由F向=mv2r知向心加速度突然增大.而在最低点F向=FT-mg,故悬线的拉力变大.由此可知B、C、D选项正确.]
点评作好受力分析,明确哪些力提供向心力,找准物体做圆周运动的径迹及位置是解题的关键.
6.A
7.B[
如图所示
F1=Fcos30°
F2=Fsin30°
F2=G,F1=ma
a=3g,F=2G.]
方法总结用向心力公式解题的思路与用牛顿第二定律解题的思路相似:
(1)明确研究对象,受力分析,画出受力示意图;
(2)分析运动情况,确定运动的平面、圆心和半径,明确向心加速度的方向和大小;
(3)在向心加速度方向上,求出合力的表达式,根据向心力公式列方程求解.
8.(1)F=mgcosα(2)v=gLtanαsinα
(3)ω=gLcosαT=2πLcosαg
解析
做匀速圆周运动的小球受力如图所示,小球受重力mg和绳子的拉力F.
(1)因为小球在水平面内做匀速圆周运动,所以小球受到的合力指向圆心O′,且是水平方向.由平行四边形定则得小球受到的合力大小为mgtanα,线对小球的拉力大小为:F=mgcosα.
(2)由牛顿第二定律得:mgtanα=mv2r
由几何关系得r=Lsinα
所以,小球做匀速圆周运动线速度的大小为
v=gLtanαsinα
(3)小球运动的角速度
ω=vr=gLtanαsinαLsinα=gLcosα
小球运动的周期
T=2πω=2πLcosαg.
方法总结匀速圆周运动问题的分析步骤:
(1)明确研究对象,对研究对象进行受力分析,画出受力示意图.
(2)将物体所受外力通过力的分解将其分解成为两部分,其中一部分分力沿半径方向.
(3)列方程:沿半径方向满足F合1=mrω2=mv2r=4π2mrT2,另一方向F合2=0.
(4)解方程,求出结果.

高一物理向心力与向心加速度


第2节向心力与向心加速度
从容说课
教材分析
教材先讲向心力,后讲向心加速度,回避了用矢量推导向心加速度这个难点,通过实例给出向心力概念,再通过探究性实验给出向心力公式,之后直接应用牛顿第二定律得出向心加速度的表达式,顺理成章,便于学生接受.
向心力和向心加速度是个难点.可以先从运动学角度推导出向心加速度的公式和向心加速度的方向,然后运用牛顿第二定律得出向心力公式,这样讲逻辑性强,有利于学生理解公式的来源,但这种讲法比较难,可能有的学生不易接受.本书未采取这种讲法,而是根据公式先讲向心力.对于小球在绳的拉力作用下做匀速圆周运动的情况来说,由绳的拉力引出向心力比较容易接受,然后在定性分析的基础上直接给出向心力公式,再由牛顿第二定律导出向心加速度的公式.
至于向心加速度公式的推导,则视学生基本情况而定.如果学生基础较好,也可改变本书的讲法,即先讲此推导,再得出向心力的公式.
教学建议
1.要通过对物体做圆周运动的实例进行分析入手,从中引导启发学生认识到:做圆周运动的物体都必须受到指向圆心的力的作用,由此引入向心力的概念.
2.对于向心力概念的认识和理解,应注意以下三点:
第一点是向心力只是根据力的方向指向圆心这一特点而命名的,或者说是根据力的作用效果来命名的,并不是根据力的性质命名的,所以不能把向心力看作是一种特殊性质的力.
第二点是物体做匀速圆周运动时,所需的向心力就是物体受到的合外力.
第三点是向心力的作用效果只是改变线速度的方向.
3.让学生充分讨论向心力的大小可能与哪些因素有关,并设计实验进行探究活动.
4.讲述向心加速度公式时,不仅要使学生认识到匀速圆周运动是向心加速度大小不变、方向始终与线速度垂直并指向圆心的变速运动,在这里还应把“向心力改变速度方向”与在直线运动中“合外力改变速度大小”联系起来,使学生全面理解“力是改变物体运动状态的原因”的含义,再结合无论速度大小或方向改变,物体都具有加速度,使学生对“力是物体产生加速度的原因”有更进一步的理解.
教学重点理解向心力和向心加速度的概念.知道向心力大小F=mrω2=mv2/r,向心加速度的大小a=rω2=v2/r,并能用来进行计算.
教学难点匀速圆周运动的向心力和向心加速度都是大小不变,方向在时刻改变.
教具准备投影仪、投影片、多媒体、CAI课件、向心力演示器、钢球、木球、细绳.
课时安排1课时
三维目标
一、知识与技能
1.理解向心加速度和向心力的概念;知道匀速圆周运动中产生向心加速度的原因;
2.知道向心力大小与哪些因素有关,理解向心力公式的确切含义,并能用来进行计算.
二、过程与方法
1.懂得物理学中常用的研究方法,培养学生的学习能力和研究能力;
2.培养学生探究物理问题的习惯,训练学生观察实验的能力和分析综合能力.
三、情感态度与价值观
1.通过a与r及ω、v之间的关系,使学生明确任何一个结论都有其成立的条件;
2.培养学生对现象的观察、分析能力,培养将所学知识应用到实际中去的思想.
教学过程
导入新课
由于匀速圆周运动的速度方向时刻在变,匀速圆周运动是变速曲线运动,运动状态时刻在改变,所以做匀速圆周运动的物体一定有加速度,所受合外力一定不为零.那么做匀速圆周运动的物体所受合外力有何特点?加速度又如何呢?本节课我们就来共同学习这个问题.
推进新课
一、向心力
演示实验:在光滑水平桌面上,绳的一端拴住一个小球,绳的另一端固定于桌上,原来细绳处于松弛状态,用手轻击小球,小球先做匀速直线运动,当绳绷直后,小球做匀速圆周运动.
(用CAI课件,模拟上述实验过程)
讨论:1.绳绷紧前,小球为什么做匀速直线运动?
2.绳绷紧后,小球为何做匀速圆周运动?小球此时受到哪些力的作用?合外力是哪个力?这个力的方向有什么特点?这个力起什么作用?
结论:做匀速圆周运动的小球,受到的绳的拉力就是它的合力,这个拉力方向始终指向圆心,方向不断变化,不改变速度的大小,只改变速度的方向.
(1)概念:做匀速圆周运动的物体受到的始终指向圆心的合力,叫做向心力.
向心力是根据力的作用效果命名的,不是一种新的性质的力.
(2)向心力的作用效果:只改变运动物体的速度方向,不改变速度大小.
向心力指向圆心,而物体运动的方向沿切线方向,物体在运动方向上不受力,速度大小不会改变,所以向心力的作用只是改变速度的方向,不改变速度的大小.
二、向心力的大小
体验向心力的大小:每组学生发给用细线连结的钢球、木球各一个,让学生拉住绳的一端,让小球尽量做匀速圆周运动,改变转动的快慢、细线的长短多做几次.
引导学生猜想:向心力可能与物体的质量、角速度、半径有关.
过渡:刚才同学们已猜想到向心力可能与m、v、r有关,那么,我们的猜想是否正确呢?下面我们通过实验来检验一下.
(介绍向心力演示器的构造和使用方法)
构造:(略)介绍各部分的名称
使用方法:匀速转动手柄,可以使塔轮以及长槽和短槽随之匀速转动,槽内的小球就做匀速圆周运动.使小球做匀速圆周运动的向心力由横臂的挡板对小球的压力提供,球对挡板的反作用力通过杠杆的作用使弹簧测力套筒下降,从而露出标尺,标尺上露出的红白相间等方格可显示出两个球所受向心力的比值.
实验操作:用质量不同的钢球和铝球,使它们运动的半径r和角速度ω相同,观察得到,向心力的大小与质量有关,质量越大,向心力也越大.
用两个质量相同的小球,保持运动半径相同,观察向心力与角速度之间的关系.
仍用两个质量相同的小球,保持小球运动的角速度相同,观察向心力的大小与运动半径之间的关系.
实验结果:向心力的大小与物体质量m、圆周半径r和角速度ω都有关系.
通过控制变量法、定量测数据等,可以得到匀速圆周运动所需的向心力大小为
F=mrω2
根据线速度和角速度的关系v=rω可得,向心力大小跟线速度的关系为
.
三、向心加速度
(1)加速度的方向
做匀速圆周运动的物体,在向心力F的作用下必然要产生一个加速度,据牛顿运动定律得到,这个加速度的方向与向心力的方向相同,始终沿半径指向圆心.
做匀速圆周运动的物体沿半径指向圆心的加速度,叫做向心加速度.
(2)向心加速度的大小
根据向心力公式,结合牛顿运动定律F=ma,推导得到:a=rω2或.
四、说明
(1)向心力的实质就是做匀速圆周运动的物体受到的合外力.
它是根据力的效果命名的,不是一种新的性质的力,在受力分析时不能重复考虑.
(2)匀速圆周运动的实质是在大小不变、方向时刻变化的变力作用下的变加速曲线?运动.
做匀速圆周运动的物体,向心力的大小不变,方向总指向圆心,是一个大小不变方向时刻变化的变力.向心加速度也是大小不变方向时刻变化的,不是一个恒矢量.
思考与讨论:
一个圆盘可绕通过圆盘中心O且垂直于盘面的竖直轴转动,在圆盘上放置一个小木块A,它随圆盘一起运动——做匀速圆周运动,如图所示.木块受几个力的作用?各是什么性质的力?方向如何?木块所受的向心力是由什么力提供的?
研究匀速圆周运动要注意以下几个问题:
1.正确分析物体的受力,确定向心力
由牛顿运动定律可知,产生加速度的力是物体受到的各个力的合力.因此产生向心加速度的力是向心力,向心力一般是由合力提供,在具体问题中也可以是由某个实际的力提供,如拉力、重力、摩擦力等.
2.确定匀速圆周运动的各物理量之间的关系
描述匀速圆周运动的物理量主要是线速度、角速度、轨道半径、周期和向心加速度.这里需要指出的是在计算中常常遇到π值的问题,一定注意带入3.14而不是180°,因为圆周运动中的角速度是以弧度/秒为单位的.例如钟表的分针周期是60分钟,求它转动的角速度.根据,那么=1.74×10-3弧度/秒.
3.要注意虽然圆周运动向心加速度公式是从匀速圆周运动推出的,但是它也适用于非匀速圆周运动情况,可以是瞬时关系.
【例题剖析1】
汽车在水平弯道上拐弯,弯道半径是r.如果汽车与地面的动摩擦因数为μ,那么为了不使汽车发生滑动的最大速率是()
A.B.C.D.
【教师精讲】汽车在水平弯道上做圆周运动,受到重力、支持力和静摩擦力作用,其中重力和支持力大小相等,方向相反,作用力互相抵消.所以静摩擦力一定沿弯道半径指向圆心,提供向心力.
随汽车行驶速率增大,需要的向心力也增大,则静摩擦力增大.因此静摩擦力达到最大值时,汽车速率不能再增大,否则会出现滑动.由牛顿运动定律可得:
,N=mg
fm=μN则,
,因此选项A正确.
【例题剖析2】如图所示,在半径等于R的半圆形碗内有一个小物体从A点匀速滑下,下列说法中正确的是()
A.物体在下滑过程中,所受合力为零
B.物体滑到底端时,对碗底的压力大于物体的重力
C.物体下滑过程中,所受合力不为零
D.物体滑到底端时,对碗底的压力等于物体的重力
【教师精讲】物体沿碗匀速下滑,是在竖直平面内做匀速率圆周运动.圆周运动是变速运动,因此一定有加速度,所以物体所受合力不能为零,选项A错误,选项C正确.物体下滑到碗底时,速度沿水平方向,但是此时向心加速度沿半径指向圆心,即竖直向上.所以物体这时受到的竖直向上的支持力大于竖直向下的重力,选项B正确,选项D错误.
【例题剖析3】有一圆锥摆,其摆线所能承受的拉力是有一定限度的.在摆球质量m一定,且保持摆角θ不变时,下面说法正确的是()
A.角速度一定,摆线越长越容易断
B.角速度一定,摆线越短越容易断
C.线速度一定,摆线越长越容易断
D.线速度一定,摆线越短越容易断
【教师精讲】圆锥摆是球在水平面内做匀速圆周运动,摆球受到重力和摆线拉力,它们的合力作向心力,沿水平方向指向圆心.设摆线长为l,摆线对球的拉力为T,如图所示.由几何关系可知,合力F=Tsinθ,轨道半径r=lsinθ,因此根据牛顿定律F=Tsinθ=mω2lsinθ,,
则T=mω2l①

根据①式可以得知当角速度一定时,拉力T和摆线长l成正比,所以选项A正确.根据②式可以得知当线速度一定时,拉力T和摆线长l成反比,所以选项D正确.
五、巩固练习
1.关于匀速圆周运动的说法,以下说法正确的是()
A.因为,所以向心加速度与半径成反比
B.因为a=ω2r,所以向心加速度与半径成正比
C.因为,所以角速度与半径成反比
D.因为ω=2πn,所以角速度与转速成正比
2.摆角为θ的圆锥摆所受的向心力大小是()
A.mgB.mgsinθC.mgcosθD.mgtanθ
3.如图所示,一轻杆一端固定一质量为m的小球,以另一端O为圆心,使小球在竖直面内做圆周运动.以下说法正确的是()
A.小球过最高点时,杆受力可以是零
B.小球过最高点时的最小速率为rg
C.小球过最高点时,杆对球的作用力可以竖直向上,此时球受到的重力一定大于杆对球的作用力
D.小球过最高点时,杆对球的作用力一定竖直向下
4.关于向心力的说法正确的是()
A.物体受到向心力的作用才可能做匀速圆周运动
B.向心力是指向圆心的力,是根据作用效果命名的
C.向心力可以是物体受到的几个力的合力,也可以是某个实际的力或几个力的分力
D.向心力的作用是改变物体速度的方向,不可能改变物体的速率
5.质量为m的木块从半球形的碗口下滑到碗底的过程中,如果由于摩擦力的作用使木块的速率保持不变,那么()
A.因为速度大小不变,所以木块的加速度为零
B.木块下滑过程中所受的合力越来越大
C.木块下滑过程中,加速度大小不变,方向始终指向球心
D.木块下滑过程中,摩擦力大小始终不变
6.圆形轨道竖直放置,质量为m的小球经过轨道内侧最高点而不脱离轨道的最小速率为v.现在使小球以2v的速率通过轨道最高点内侧,那么它对轨道的压力大小为()
A.0B.mgC.3mgD.5mg
参考答案:
1.D2.D3.AC4.ABCD5.C6.C
课堂小结
这节课我们学习了向心力和向心加速度,掌握了它们大小的计算公式和方向特点,进一步明确了匀速圆周运动的实质——是在大小不变方向时刻变化的变力作用下的变加速曲线运动.
布置作业
课本P72作业3、4、5.
板书设计
1.向心力
(1)概念:做匀速圆周运动的物体受到的始终指向圆心的合力,叫做向心力.向心力是根据力的作用效果命名的,不是一种新的性质的力.
(2)向心力的作用效果:只改变运动物体的速度方向,不改变速度大小.
2.向心力的大小
向心力的大小与物体质量m、圆周半径r和角速度ω都有关系.
F=mrω2
根据线速度和角速度的关系v=rω可得,向心力大小跟线速度的关系为
.
3.向心加速度
(1)加速度的方向
做匀速圆周运动物体的沿半径指向圆心的加速度,叫做向心加速度.
(2)向心加速度的大小
根据向心力公式,结合牛顿运动定律F=ma,推导得到a=rω2或.
活动与探究
感受向心力:
在一根结实的细绳的一端拴一个橡皮塞或其他小物体,抡动细绳,使小物体做圆周运动(如图所示).依次改变转动的角速度、半径和小物体的质量,体验一下手拉细绳的力(使小球运动的向心力),在下述几种情况下,大小有什么不同:使橡皮塞的角速度增大或减小,向心力是变大还是变小;改变半径r尽量使角速度保持不变,向心力怎样变化;换个橡皮塞,即改变橡皮塞的质量m,而保持半径r和角速度不变,向心力又怎样变化.
做这个实验的时候,要注意不要让做圆周运动的橡皮塞甩出去碰到人或其他物体.

向心力


总课题曲线运动总课时第8课时
课题向心加速度向心力课型习题课



标1.进一步掌握向心力、向心加速度的有关知识,理解向心力、向心加速度的概念。
2.熟练应用向心力、向心加速度的有关公式分析和计算有关问题
教学
重点理解向心力、向心加速度的概念并会运用它们解决实际问题。
教学
难点应用向心力、向心加速度的有关公式分析和计算有关问题。
学法
指导合作探究、精讲精练、
教学
准备圆锥摆
教学
设想知识回顾→学生掌握基本公式,基本概念→合作探究→突出重点,突破难点→典型例题分析→巩固知识→达标提升
上节课我们学习了向心力、向心加速度的知识,要掌握它们的含义及求解公式,弄清它们间的联系,为后面的学习做好准备。下面我们通过习题课加深对上节课知识的理解和应用。
教学过程
师生互动补充内容或错题订正

任务一知识回顾
(独立完成下列问题)
1.什么是向心力、向心加速度?
(1)做匀速圆周运动的物体受到的始终指向的合力,叫做向心力。
注意:向心力是根据力的作用效果命名的,不是一种新的性质的力。向心力的作用效果:只改变运动物体的速度方向,不改变速度大小。
(2)做匀速圆周运动物体的沿半径指向的加速度,叫做向心加速度。
2.向心加速度和向心力的大小怎样计算?

(1)、向心加速度公式:a===

(2)、向心力公式:F===
任务二典型例题分析

例题1、如图所示,用同样材料做成的A、B、c三个物体放在匀速转动的水平转台上随转台一起绕竖直轴转动.已知三物体质量间的关系ma=2mb=3mc,转动半径之间的关系是rC=2rA=2rB,那么以下说法中错误的是:()
A.物体A受到的摩擦力最大
B.物体B受到的摩擦力最小
C.物体C的向心加速度最大
D.转台转速加快时,物体B最先开始滑动

合作与交流:如图所示,细绳一端系着质量为M=0.6kg的物体,静止在水平面上,另一端通过光滑小孔吊着质量为m=0.3kg的物体,M与圆孔的距离为0.2m.M和水平面的最大静摩擦力为2N.现使此平面绕中心轴转动.问角速度ω在什么范围内,m会处于静止状态?(g=10m/s2)

例题2.内壁光滑圆锥筒固定不动,其轴线竖直,如图,两质量相同的小球A和B紧贴内壁分别在图示所在的水平面内做匀速圆周运动,则()
A.A球的线速度必定大于B球的线速度
B.A球对筒壁的压力必定大于B球对筒壁的压力
C.A球的角速度必定大于B球的角速度
D.A球的运动周期必定大于B球的运动周期

合作与交流:如图所示,已知水平杆长L1=0.1米,绳长L2=0.2米,小球m的质量m=0.3千克,整个装置可绕竖直轴转动,当该装置以某一角速度转动时,绳子与竖直方向成30°角.g取10m/s2,求:
(1)试求该装置转动的角速度;
(2)此时绳的张力是多大?

任务三达标提升
1.下列说法正确的是?
A.匀速圆周运动是一种匀速运动?
B.匀速圆周运动是一种匀变速运动?
C.匀速圆周运动是一种变加速运动?
D.物体做圆周运动时其合力不改变线速度的大小
2.下列关于向心力的论述中,正确的是:()
A.物体做圆周运动后,过一段时间后就会受到向心力
B.向心力与重力、弹力、摩擦力一样是一种特定的力,它只有物体做圆周运动时才产生。
C.向心力可以是重力、弹力、摩擦力等力中的某一种力,也可以是这些力中某几个力的合力。
D.向心力既可能改变物体运动的方向,又可能改变物体运动的快慢
3.一个匀速圆周运动的物体,它的转速如果增加到原来的4倍,轨道半径变为原来的1/4,则向心加速度为:
A.与原来的相同B.原来的4倍
C.原来的8倍D.原来的16倍
4.关于质点做匀速圆周运动的下列说法中,正确的是()
A.由a=v2/r可知,a与r成反比B.由a=ω2r可知,a与r成正比
C.由v=ωr可知,ω与r成反比D.由ω=2π/T可知,ω与T成反比
5.如图5所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,物体所受向心力是?
A.重力B.弹力?
C.静摩擦力D.滑动摩擦力?
6.如图所示的两轮以皮带传动,没有打滑,A、B、C三点的位置关系如图,若r1r2,O1C=r2,则三点的向心加速度的关系为()
A.aA=aB=aCB.aCaAaB
C.aCaAaBD.aC=aBaA
7.汽车在半径为R的水平弯道上转弯,车轮与地面的摩擦系数为μ,那么汽车行驶的最大速率为_____。
8.一个做匀速圆周运动的物体若其半径不变,角速度增加为原来的2倍时,所需的向心力比原来增加了60N,物体原来所需的向心力是N.?
9、质量为1.0kg的物体放在可绕竖直轴转动的水平圆盘上,物体与转轴间用轻弹簧相连.物体与转盘问最大静摩擦力是重力的0.1倍,弹簧的劲度系数为600N/m,原长为4cm,此时圆盘处于静止状态,如图所示.
(1)圆盘开始转动后,要使物体与圆盘保持相对静止,圆盘的最大角速度ω0=
(2)当角速度达到2ω0时,弹簧的伸长量X=.(g取10m/s2)