平面直角坐标系教学反思简短12篇。
教师是春蚕,是蜡烛,教案的组织形式多样,但一定要结合当前教材来进行编写。教师撰写教案不仅仅是要体现教师怎么教的问题,还要把重点放在学生上,你是否正在搜索有关教案的模板吗?希望这篇“平面直角坐标系教学反思简短”能够完美地满足您的需求,欢迎你收藏本站,并关注网站更新!
平面直角坐标系教学反思简短 篇1
根据教学设计本节课主要从以下几个方面进行反思:
一、教材分析和学情分析
从整套教材及本章两个方面分析了本节的知识不仅是后面坐标方法的简单应用的基础,也是后继学习函数的图像,函数与方程和不等式的关系等知识的坚实基础。从学生的认知规律来看,初一学生主要以形象思维为主,数形结合思想意识的形成是本节的重点和难点。在此基础上,制订了合理的教学目标及教学重点和难点,在制订教学目标时,不仅有知识与技能目标,更注重过程与方法目标和情感态度与价值观目标,同时,注重数形结合思想的形成这一难点的突破。
二、教法与学法分析
根据本节课的特点主要运用了情景教学法和发现教学法,激发学生的探索欲望,激活学生的思维,充分体现教师主导与学生主体相结合。呈现学生独立思考、自主探究、合作交流的学习模式。
三、教过程学
1、创设情境,孕育新知
情境1 引导学生借助数轴来解决问题,使学生将新旧知识联系起来,符合学生的认知规律,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上这一新课程理念。
情景2 从学生熟知的生活情境入手,让学生思维实现从一维向二维的过渡,同时让学生感受数学与现实生活的紧密联系,激发学生的兴趣与探究欲望。
2、引导发现,探索新知
通过情景设置和问题的提出,让学生对数学家以及他的贡献有所了解,从而对学生进行数学文化方面的熏陶和理想教育, 并为下一步介绍平面直角坐标系做好铺垫,同时,在活动中培养学生的探究、合作、交流的能力。
问题3、4的解决,是本节课的核心环节。教师的讲解配以多媒体的直观演示,能更好的突破难点,将枯燥的知识趣味化,同时,及时的反馈练习,让学生将知识转化成自身的技能,从而更好的实现本节课的教学目标。
3、分层练习,巩固新知
通过分层练习,让每一位学生都能运用自己在本节课所掌握的知识解决问题,体验成功的喜悦,同时,根据新课标“让每个学生都获得自己力所能及的数学知识”这一理念,让不同的学生有不同的收获与发展。
4、知识小结,收获新知
一方面对本节课的知识点作一个复习与小结,另一方面,让学生学会梳理自己的思路,养成良好的学习习惯。
整个教学过程中,我通过设计以上四个教学活动,引导学生从已有的知识出发,主动探索具体的生活情境问题,积极参与合作交流,获取知识,发展思维,形成技能,同时也让学生感受数学学习的乐趣。
四、板书设计
本节的板书设计突出了两个重点:构成平面直角坐标系的三要素,点的坐标的特点。
五、评价分析
本节课的教学过程,立足于问题情境的创设,将原本枯燥的知识兴趣化,教师在教学中做好引导者,让学生在自主探究,合作交流中获取知识,体现出教师为主导,学生为主体,练习为主线的教学理念和教学规律,注重学生能力的培养和情感教育,多方位地体现新课标的理念。
平面直角坐标系教学反思简短 篇2
作为教师在教学中通过不断地反思,来提高自己的教学水平,积累自己的教学经验。下面我针对自己的“平面直角坐标系”这节课做一总结和反思。
“平面直角坐标系”反映了平面直角坐标系与现实世界的密切联系,让学生认识到数学与人类生活的密切联系和对人类历史发展的作用,也提高了学生参加数学学习活动的积极性和好奇心。因此,首先要确定这节课的教学目标和这节课的教学重点,难点,要在教学过程中创设生动活泼、直观形象,且贴近他们生活的问题情境。
“平面直角坐标系”是学生从数过渡到形的基础,属于数学建模中的几何建模,因此为了让学生更好的.理解这个抽象的概念,教学从生活实际背景开始,学生们从所设置的练习入手,进入本节的学习。在教学中,运用开放型问题进行发散思维的训练,将封闭型的问题改编到生活当中,以增加发散的成分和探究的因素。
首先我通过创设情境,如何确定同一直线上的点的位置呢? 让学生小组讨论,全班交流,通过复习数轴,利用数轴这一工具把数和点一一对应起来。 不在同一直线上的三个点的位置如何确定呢?引起学生兴趣后讨论,给学生介绍平面直角坐标系的有关知识。
①平面直角坐标系的构成?
② 轴与轴把坐标平面分成几个部分?它们分别叫什么?
让学生动手画一个直角坐标系,建立有序实数对与坐标平面内的点的对应关系,然后再通过练习,让学生掌握已知点求坐标和已知坐标描点的技能,领悟平面直角坐标系中点与有序数对的一一对应关系。通过小组讨论:
① 坐标轴上的点的坐标有什么特征?
② 各个象限内的点的坐标有什么特征?
③ 横坐标或纵坐标相等的点有什么特征?
④ 各个象限中角平分线上的点的坐标有什么特征?
新课程强调转变学生的学习方式,改变以往单一的、被动的接受式的学习,倡导构建具有“自主、合作、探究”特征的学习方式。因此,我在这节课的教学设计中,充分挖掘贴近学生实际生活的素材,在实际问题情境中抽象出平面直角坐标系的概念,进而去探究点在平面直角坐标系中的特征,加强数学与实际的联系,让学生体会数学在生活中的广泛应用,激发学生的学习兴趣。在教学过程中,积极尝试小组合作学习,鼓励学生的自主探究和合作交流。培养学生在自主学习中发现问题、提出问题的能力,启发学生养成与同学合作交流,在合作交流中陈述自己的意见的习惯。这样,不仅激发了学生学习的兴趣,调动起学生学习的积极性,而且增强了学生的集体荣誉感。
通过这节课小组合作交流,发现学生特别积极活跃,学生与学生之间的相互交流,使每一位学生都有均等的参与交流展示的机会。我感到非常高兴,由于运用“独学、对学、群学”的学习方式,不仅为学生自主发展拓展了空间,而作为教师已不必告诉他们应当学什么东西,学生已经有了兴趣学习更多的知识和探究更深入的问题的强烈愿望。
然而,由于受学习习惯的影响,以及课堂组织还不是很到位,导致小组合作交流中还存在着一些问题:
(1)、从学生的参与情况来看,有部分小组成员没有积极参与到交流过程中,把自己作为个体孤立起来;
(2)、从交流的结果看,在小组交流后进行班级交流,学生反馈出来的还不是小组合作交流的结果,而是学生个人的想法。
(3)、由于把课堂放手给了学生,收的不好,时间上没有把握好,导致练习不够。
针对以上存在的问题,在今后的教学中将采取一些改进措施:
(1)、教学中要尽量激发学生参与的积极性,引导学生从交流中体验合作的快乐;
(2)、积极引导学生掌握一些基本的合作交流技能,让每个学生都有机会说出自己的想法和展示自己,引导小组成员互相评价;
(3)、根据学生的实际和教材的特点,尽量创设合作交流的机会,加强小组同学之间的互动,培养学生的情感交流和合作意识。
(4)、加强课程环节的连贯性。该收则收。
平面直角坐标系教学反思简短 篇3
这是讲平面直角坐标系的第二节课,数形结合思想在学生中才刚刚产生,平面直角坐标系还不十分熟习。教材来讲内容简单,我们却必须挖掘教育资源,赋予课程更强大的生命力。在本节课三个问题情境,既复习巩固了数轴的知识,把生活拉近教学课堂,又为本节课的学习打下基础,做了铺垫。
纵观整堂课,以学生活动为主线,自始至终做到了把课堂还给学生,在教学中体现了多种合作方式——有二人合作、小组合作、班级合作。充分调动了全部同学的热情,课堂活跃,在同学们的共同努力下,完成了教学任务。
远程教学自身的优点:把原本沉闷的学习生活增添了色彩,它改变了传统教学中师生之间的关系,使二者更易于建立共学或互学的关系,同时远程教学也为学生合作提供了广阔空间和多种可能,使个性化学习成为现实。
在课堂活动中,我充分利用了远程教育资源—光盘,从情境的创设到问题的给出,到平面直角坐标系的区域划分等,从中我既学到了现代信息技术的运用,也获得了激发学生学习兴趣的好的方法。更知道了数学的课程资源非常丰富,丰富的课程资源还有待我们努力去挖掘。学生是学习的主体,要想方设法去调动。
虽然我努力备课组织课堂,但在教学过程中还有很多的不足:如拓展知识较多,知识细节较多,致使少部分接受慢的学生没能得到很好的理解和锻炼,这让我明白了拓展知识的有序性和渐进性;有时课堂气氛不够活跃;对学生的课堂表达能力还需加强训练。在教学过程中,仅仅用课内几分钟时间,要求学生领悟数学思想方法,懂得数学价值,升华情感,对大多数学生来说可能要求太高。有效的办法是课内外相结合,在课前向学生布置相关的学习任务,使学生有足够的思考时间。
相信我以后再上这节课的时候对于这节课的不足之处应该会有所改进,努力提高自己的教学水平,使学生愿学乐学。
平面直角坐标系教学反思简短 篇4
期末复习课“平面直角坐标系复习”,安排了一课时复习。课前我们精心设计了教案学案,安排前置学习内容,学生课前进行了前置学习训练。
一、知识点归纳
上课开始,由学生进行了知识点的回忆:1.有序数对;2.平面直角坐标系;3.特殊位置的点的坐标特征;4.用坐标表示地理位置和用坐标表示平移;5.点到坐标轴的距离和坐标平面内几何图形的面积。老师在学生复习的基础上,提出:除了平面直角坐标系内有序数对的意义还有一些特定的含义,(如前置学习1如果用(7,2)表示七年级二班,那么八年级三班可表示成( ) ,(9,4)表示的含义是( )。坐标平面内有序数对与坐标平面内的点的一一对应,在研究问题时经常用到了数形结合的思想方法。
二、难点交流
结合前置学习的情况,给出足够的时间进行交流,提出:交流前置学习题的正确答案是什么;哪几道题的解题过程值得推荐;哪几道题是易错题及其解题注意点。明确了交流任务,学生交流讨论积极踊跃。学生的回答表现了学生知识理解和掌握的深刻。
在交流哪几道题的解题过程需要一起研究时,多数同学推荐第15题,题目是:“已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是___”,由学生介绍解题书写过程后,提出了OB等于a的绝对值,老师补充:已知点A(4,6),B(3,0),在x轴上求一点C,使△ABC的面积等于12.重点强调了求出BC=4后,由B(3,0)求出的C点有两种情况C(7,0)或(-1,0)。
学生畅谈在解题时的注意点,4、6、7、8题的距离问题,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值;4、8、10、15题两解问题,提醒我们思考要严谨;3、5、9题等题目的有序数对的有序问题;14题等题目的审题仔细的问题,点在平移时“左右减加横坐标,上下加减纵坐标”,补充:在△ABC中, A(2,-3)平移到A′(-1,2),求B(3,2)平移后的点B′的坐标,已知平移后的点C′(-4,6),求平移前的点C的坐标。从而关于点的坐标平移还要考虑平移前和平移后。
在协进学习的教学时,学生独立完成后,侧重讨论了1、2、4题所涉及的知识点和解题思路,学生从讨论后认识到,第1题用到了有理数的加法、乘法法则;第4题是“几个非负数的和为零,则每个加数都为零”的典型题。再由学生上黑板板演并讲解6、7、8三题。学生对6(1)(3)的两种情况有了更深刻的认识。
提升学习安排的面积问题,重在三角形面积的分割重组,学生提出了多种分割补形方法,通过学生的书写示范,规范了书写要求。
三、反思提高
安排教学活动要具体和可操作:学生交流一定要有事可做,在交流前置学习内容时,提出的“正确答案”、“解题过程”、“推荐易错”三个问题保证了学生交流的热烈和有效。
适当提升使学生复习课也有新收获:在学生推荐协进学习15题后,及时补充上面已知面积求C点坐标,学生进一步感受数形结合和方程思想;交流协进学习14题,增添求平移前和平移后的点的坐标,进一步体会注意平移的“左右”、“上下”和“前后”。
知识回顾让学生有成就感:协进学习第1、2、4、6、7、8等题目的解题思路和所涉及的知识的回顾,让学生可以以更高的视点分析题目,条件许可还可以由学生进行题目的变化和引申,增加学习数学的兴趣。
平面直角坐标系教学反思简短 篇5
平面直角坐标系是今后学习函数的基础,是数形结合的真正体现。尽管课本上只有很少的一部分介绍,但真的弄懂学会还是要下点功夫的。
我们对这部分内容由两课时改为三课时:第一课时了解平面直角坐标系,会由点写出点的坐标,或由坐标确定点的位置;第二课时掌握点在不同位置时的坐标特征,如各象限内、坐标轴上的点的坐标特征,各象限角平分线上的点的坐标特征,关于坐标轴、原点对称点的坐标的关系,与坐标轴平行的直线上的点的坐标特征,以及它们的应用;第三课时点到坐标轴的距离,平面直角坐标系中一些图形的面积的计算等。
从安排可以看出内容比较丰富,但凭记忆肯定是不行的。因此需要学生紧紧抓住平面直角坐标系这个工具,在图形中理解,即数形结合思想的渗透。在培养学生迅速画图上下功夫,围绕图形分析、讲解。课堂上尽量让学生做、说,暴露学生的思维,在讨论中完善自己的方法,丰富自己的知识。
平面直角坐标系教学反思7
这是讲平面直角坐标系的第二节课,数形结合思想在学生中才刚刚产生,平面直角坐标系还不十分熟习。教材来讲内容简单,我们却必须挖掘教育资源,赋予课程更强大的生命力。在本节课三个问题情境,既复习巩固了数轴的知识,把生活拉近教学课堂,又为本节课的学习打下基础,做了铺垫。
纵观整堂课,以学生活动为主线,自始至终做到了把课堂还给学生,在教学中体现了多种合作方式——有二人合作、小组合作、班级合作。充分调动了全部同学的热情,课堂活跃,在同学们的共同努力下,完成了教学任务。
远程教学自身的优点:把原本沉闷的学习生活增添了色彩,它改变了传统教学中师生之间的关系,使二者更易于建立共学或互学的关系,同时远程教学也为学生合作提供了广阔空间和多种可能,使个性化学习成为现实。
在课堂活动中,我充分利用了远程教育资源—光盘,从情境的创设到问题的给出,到平面直角坐标系的区域划分等,从中我既学到了现代信息技术的运用,也获得了激发学生学习兴趣的好的方法。更知道了数学的课程资源非常丰富,丰富的课程资源还有待我们努力去挖掘。学生是学习的主体,要想方设法去调动。
虽然我努力备课组织课堂,但在教学过程中还有很多的不足:如拓展知识较多,知识细节较多,致使少部分接受慢的学生没能得到很好的理解和锻炼,这让我明白了拓展知识的有序性和渐进性;有时课堂气氛不够活跃;对学生的课堂表达能力还需加强训练。在教学过程中,仅仅用课内几分钟时间,要求学生领悟数学思想方法,懂得数学价值,升华情感,对大多数学生来说可能要求太高。有效的办法是课内外相结合,在课前向学生布置相关的学习任务,使学生有足够的思考时间。
相信我以后再上这节课的时候对于这节课的不足之处应该会有所改进,努力提高自己的教学水平,使学生愿学乐学。
平面直角坐标系教学反思简短 篇6
“平面直角坐标系”反映了平面直角坐标系与现实世界的密切联系,让学生认识到数学与人类生活的密切联系和对人类历史发展的作用,也提高了学生参加数学学习活动的积极性和好奇心。因此,首先要确定这节课的教学目标和这节课的教学重点,难点,要在教学过程中创设生动活泼、直观形象,且贴近他们生活的问题情境。
“平面直角坐标系”是学生从数过渡到形的基础,属于数学建模中的几何建模,因此为了让学生更好的理解这个抽象的概念,教学从生活实际背景开始,学生们从所设置的练习入手,进入本节的学习。在教学中,运用开放型问题进行发散思维的训练,将封闭型的问题改编到生活当中,以增加发散的成分和探究的因素。
我通过创设情境:
⑴老师提问时会说:“请第X排第X列的同学回答。”
⑵一位新同学想去商店买文具,可他对这里不熟悉,就问其他同学商店的位置?有同学就告诉他出校门往东走200米,再往北走300米就是商店。
⑶新乡位于北纬41.0°,东经118.68°。这些现象有何共同特点?这些现象与我们所学的数学有关系吗?
在现实的生活中,还有这样的例子很多,你们能不能举出一些现实生活中用一对数来表示位置的例子呢?让学生小组讨论,全班交流,这些都反映了一对数和位置的对应关系。
让学生动手画一个直角坐标系,建立有序实数对与坐标平面内的点的对应关系,然后再通过练习,让学生掌握已知点求坐标和已知坐标描点的技能,领悟平面直角坐标系中点与有序数对的一一对应关系。通过小组讨论:
① 坐标轴上的点的坐标有什么特征?
② 各个象限内的点的坐标有什么特征?
③ 横坐标或纵坐标相等的点有什么特征?
④ 各个象限中角平分线上的点的坐标有什么特征?
通过这节课小组合作交流,发现学生特别积极活跃,学生与学生之间的相互交流,使每一位学生都有均等的参与交流展示的机会。我感到非常高兴,由于运用“自主、合作、探究“的学习方式,不仅为学生自主发展拓展了空间,而作为教师已不必告诉他们应当学什么东西,学生已经有了兴趣学习更多的知识和探究更深入的问题的强烈愿望。
但在教学过程中还有很多的不足:如拓展知识较多,知识细节较多,致使少部分接受慢的学生没能得到很好的理解和锻炼,这让我明白了拓展知识的有序性和渐进性;有时课堂气氛不够活跃;对学生的课堂表达能力还需加强训练。在教学过程中,仅仅用课内几分钟时间,要求学生领悟数学思想方法,懂得数学价值,升华情感,对大多数学生来说可能要求太高。有效的办法是课内外相结合,在课前向学生布置相关的学习任务,使学生有足够的思考时间。
平面直角坐标系教学反思简短 篇7
20xx年10月21日上午,第四节课,在七年级六班,我执教了一节公开课,接受大家的考核。课题是7.1.2《平面直角坐标系》.《平面直角坐标系》是人教版《数学》七年级下册第六章的内容,是本章中继《有序数对》之后的第2课时。下面我从教材分析、目标分析、问题诊断与教法特点、不足这五方面来反思这节课的教学设计.
一、教材分析—我对本节内容的深度认识
《平面直角坐标系》是在学生学习了“有序数对”,初步认识了用有序数对可以确定物体的位置之后,为进一步探讨是否可以用有序数对表示平面内点的位置问题而引入的。在备课中,我翻看了整章的教学内容,细读了多遍本节课的教材和教学参考。
认识到学生初学坐标系,一定要搞懂它的作用。即利用平面直角坐标系可以确定平面内任一点的位置;有了坐标系,就建立了点与有序实数对(坐标)的对应,于是有了函数(数量关系)与它的图象(几何图形)之间的对应,进而可以通过图象来研究和解决函数的有关问题;有了坐标系,就可以把代数问题转化成几何问题,也可以把几何问题转化成代数问题。可见,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。
在本章学习中,平面直角坐标系是学生从数的角度进一步认识平移变换的基础,也是后续学习函数、平面解析几何等必备的知识。平面直角坐标系是数轴的发展,它的建立和应用过程,实现了认识上从一维到二维的发展,体现了类比方法、渗透着数形结合等数学思想,因此学习平面直角坐标系这一内容是发展学生思维,提高能力的极好时机。
二、目标分析---制定本节课的实际教学目标
阅读教材之后,我翻看了教学大纲,根据《数学课程标准》中关于“平面直角坐标系”的相关教学要求,结合教材特点和学生的实际情况,从而确定了“知识与技能、过程与方法、情感态度与价值观”的三维教学目标。
【目标1】
初步掌握平面直角坐标系及相关概念;能由坐标描点,由点写出坐标.
学习本节内容之前,学生已经具有借助数轴用一个数表示直线上点的位置的经验,了解了直线上的点与坐标之间的对应;也学习了用有序数对确定物体的位置.这些均是本节课学习新知识、完成知识目标的基础。
【目标2】
经历知识的形成过程,引导学生用类比的方法思考和解决问题,进一步体会数形结合的思想,认识平面内的点与坐标的对应.
新课程标准指出:“展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。”
遵循新课标的这一理念,我确立本节课教学目标的第2点。为了实现这一教学目标,帮助学生真正经历知识的形成过程,我以东二路附近的四中西门和乐购和伟浩广场为背景,通过表示几个相对位置来设计情境,逐一展开;并将此环节分为四个阶段:独立思考—共同讨论—类比建系—解决问题。
首先,学生经过独立思考提出:可以利用两个数表示平面内点的位置。为了让学生更好地体会这一点,教师追问:只用一个数可以吗?引发学生讨论,并进一步感受只用一个数表示的点很多,具有不确定性。在此基础上,明确用有序数对描述.但由于没有约定顺序与方向,对于同一位置学生提出了用不同的有序数对描述,怎样才能用一个统一的标准表示呢?学生类比数轴的建立提出再引入一条数轴,并约定数对的顺序,至此建立了平面直角坐标系。为了体会这种表示方法具有一般性,设计表示平面内胜东医院相对位置的点,在解决问题的同时,加深对平面直角坐标系的理解,实现对学生能力的培养。
【目标3】
通过介绍相关数学史培养学生善于观察,勤于思考的品质.
数学教育的目的是促进学生的全面发展.把学生良好品质的培养和形成渗透到每一节课.为此我确立了教学目标3。
在教学过程中,适时给学生介绍 相关数学史笛卡尔和直角坐标系的发现过程,使他们了解概念、定理及公式的由来,了解数学家追求真理、善于观察、热爱思考的事迹,从中受到人文精神的熏陶,继而促进学生良好品格的形成。
本节课的教学重点是平面内点的坐标概念以及由坐标描点和由点写出坐标。由于“对应”的概念比较抽象,所以认识点与坐标的一一对应关系是本节课教学的难点.
三、问题诊断---针对学生不易理解的点和易错点进行设计
1.本节课学生不易理解点与坐标的对应,为此教师做了一番精心设计.设计了两个活动:(1)由坐标描点;(2)由点写坐标.使其先通过动手操作实现感性的认识,落实描点与写坐标;再通过利用几何知识解释,进行理性思考,深入体会点与坐标的对应。同时希望学生进一步体会实际问题抽象成数学问题,反过来利用数学问题的解决指导实际。
2.对于坐标概念有序性的理解也是学生的一个易错点。在辨析用不同有序数对表示同一个点的位置时,首次强调了顺序的重要性;在提炼坐标概念时,再次强调先横后纵,加深印象,做读坐标训练中设计(2,3)和(3,2)两个点,直观反映位置的不同;在“由坐标描点”的活动中,提出问题“点(3,-3)和点(-3,3)表示同一个点吗?”学生又一次体会了坐标的有序性。这样逐一深入,落实重点.
四、教法特点—以人为本,重视过程研究
1.联系实际,以学生为主体设计教学过程,符合学生的认知规律。 课前设计的学校附近的建筑物位置表示,选自贴近学生生活的素材,使学生经历由实际问题抽象出数学问题及通过对数学问题的研究解决实际问题的过程,让学生充分感受到数学来源于生活、服务于生活,感受到平面直角坐标系在解决实际问题中的作用。
2.通过设计活动情境揭示“平面直角坐标系”的形成过程,使学生经历了观察、思考、比较、类比、抽象、概括等一系列思维过程。这样也使得教学过程更符合学生的认知特点,有利于学生能力的培养。
3.改变学生的学习方式是新课程理念的核心,交流讨论是新课标所倡导的学生学习的方式。与之相适应,我在教学中组织学生充分讨论和交流,如:在展示作业环节,在“建立模型、解决问题”环节,在“辨析概念、深入理解”环节.在讨论过程中,一方面学生用数学语言发表自己的想法和观点,倾听他人的思路,从中得到启发,进一步改进和完善自己的想法;另一方面,讨论交流针对的是教
学中的重点、难点,针对学生可能碰到的疑难、单独解决有困难处展开。这样就打破了课堂模式单调的局面,使学生间有直接交流合作的机会,真正实现共同学习、共同提高。
从本节课预期教学效果来看,学生的学习兴致很高。能够积极参与,并初步掌握平面直角坐标系及相关概念,能由坐标描点,由点写出坐标;在轻松愉快的氛围中经历了概念的形成过程,掌握了读坐标和描点两个技能,并体会了数形结合等重要的数学思想方法。
五.几点不足
1.课一开始的问题情境,由于和学生互动多,占时较多,造成后续的学习中,综合练习时间不充分。
反思——以后还是要学会做减法,大胆舍弃一些与本课无关的内容,开门见山,及时转向重点内容
2. 对难点,一一对应关系强调不足。
反思——一一对应关系,不是一下子告知学生的,而应该是在两个技能训练中让学生逐步体会的,但是需要老师语言的引导。这里重视不够,还是因为没有把握好难点。
3. 由于时间关系,目标3没有详尽渗透。
反思——数学史的渗透,应该适时进行,这一节确实是学习的大好时机,和时间不够有关。
六. 备课收获和听课反思
这一节课,从研读教材到制作课件和学思导纲,自己备课花费四个晚上,前后改了三个方案。研究了网上一些优秀的教学设计,学到了些许教学技巧和思想。
同时又听取了本教研组其他四位老师对这节课的讲授,收获很多。不同的教学风格下,教学设计不同,各有智慧之处,同时也深深感到自己备课的片面和思考的不足。以后会更多的向大家学习,集中大家的智慧,更好的服务学生,让学生受益,自己得以更好的成长!
平面直角坐标系教学反思简短 篇8
平面直角坐标系是学生从数过渡到形的基础,属于数学建模中的几何建模,因此为了让学生更好的理解这个抽象的概念,教学从学生自主学习开始,学生们从所设置的问题入手,在平面中描述出点的位置,以问题引出知识,进入本节课程的学习。在教学中,运用开放型问题进行发散思维的训练,将封闭型的问题拓展到学生的生活当中,以增强学生的探究意识。
整个教学过程以问题情境,将小黑板、多媒体综合应用,教给学生如何解决数学模型,建立“问题——自主学习——合作交流——探究总结”的解决数学问题的思维模式,让学生在问题中学习,这是我认为可以在今后的教学中采用的教学方法。本节课教学立足于问题情境的创设,将原本枯燥的平面直角坐标系与现实生活紧密联系起来,在解决实际问题中学习知识;立足于知识的发现和发展,让学生能在情境问题中理解建立平面直角坐标系的必要性,应用平面直角坐标系去分析和解决实际问题;立足于知识和情感的教育,在知识教学的同时,对学生进行理想教育,又在本课结束前对学生进行人生观的教育。在教学中力求体现学生探究能力的培养,通过问题情境的设计,引导启发学生进行探究及自主学习,并及时地加以总结和反馈,尝试从多角度去体现新课程理念。
在教学中,我们的习惯是“进行问题教育”——让学生带着问题走进教室,没有问题走出教室,教学中“懂的人问不懂的人”。通过这节课教学,我感觉学生能够提出一个问题比解决一个问题更重要,教师要让学生带着问题走进教室,更要让学生带着更多的问题走出教室,在课堂上激发学生的问题意识,加深问题的深度和广度,让学生努力形成自己解决问题的能力。
本节课的巩固练习都是随着新问题、新知识一起设计的,让学生的学与练习紧密相连,从教学效果来看还不错,在教学中我设计了4组练习,主要是①找坐标;②找点;③象限内点的符号;④综合运用。在练习中尤其是前3个练习是本节课的重点、难点,在教室里以学生的座位建立平面直角坐标系,让学生自己说出所在位置的坐标。让全体同学参与到活动中来,不仅活跃了课堂气氛,还能让学生加深体验点的坐标以及特征。
本课采用了"创设情境—提出问题—解决问题—应用拓展"的教学过程。这样的学程使学生不仅获得了书本上的知识,而且展示了知识形成过程及对知识理解、以及各个知识间的相互联系,帮助学生形成了知识体系,完善了认知结构,拓展了知识应用。这样教学不仅使学生理解了学习内容,而且使学生掌握了学习方法,更好地利用所学知识解决问题。
在本节课的教学过程中还存在一些不足:
1、整个教学活动中,老师应该适当进行“一题多变”、“一法多用”。这样有利于将学生从思维定势中解脱出来,养成多角度、多方面分析问题的习惯,以培养思维的广阔性和创新性。对于教材中所列举的例题、习题,我们应该以题为载体,阐述试题的条件加强、条件弱化、结论开放、变换结论、与其他试题的联系与区别,将体现试题的知识价值、教育价值,这样达到做一题、会做一类试题效果。
2、思考题是为后续学习需要设置的,是结合下节课建立直角坐标系的不同点坐标不同而设置的,在多媒体课件中移动的是矩形,而听课后老师们都有不同的意见,有老师建议移动坐标系,经过课后教学思考发现,移动坐标系更能让学生感受到不同坐标系下点的坐标的变化。
3、数轴上点的坐标特征强化不够到位,并且教学内容稍大,有些前松后紧。
平面直角坐标系教学反思简短 篇9
《平面直角坐标系》这节课在教学上比较容易,课程中的概念性知识比较的多,比较容易安排,所以合理安排好各个知识点以及衔接,就成为上好课的关键。
本课主要还是以书本上的步骤为主,讲授直角坐标系的相关知识,通过确定平面内一点P来引入平面直角坐标系,并且阐述要在平面内表示某个点的位置要用一对有序实数对来表示,即点的坐标。这个过程既让学生理解了直角坐标系的相关概念,同时也让学生明白了如何在一个平面内将某个点的位置用坐标表示出来。
我这节课的练习巩固都是随着新知识一起给出了,想让学生学与练紧密相连,学会就要用上,从整体效果来看还可以。我设计了4组练习,主要是:
①找出所给的点的坐标;
②根据所给的几个特殊点归纳出在横轴和纵轴上的点的坐标的特征;
③请一位同学在所给的坐标平面上指一个点,另一个同学说出它的坐标,答对了这个同学也可以请另外的同学说出他所指的点的坐标,以此类推;
④现实运用,在班级中建立直角坐标平面,请学生自己所在的位置的坐标。
本课灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织游戏活动等。调动了学生学习的积极性,充分发挥了学生的主体作用。通过游戏活动让学生再次感知点和数的对应关系,然后上升到理性,从而突破了难点,效果应该很好,体现了素质教育要求。课堂拓展了学生学习空间,给学生充分发表意见的自由度。
平面直角坐标系教学反思简短 篇10
本课《平面直角坐标系》反映了平面直角坐标系与现实世界的密切联系,让学生认识到数学与人类生活的密切联系和对人类历史发展的作用,也提高了学生参加数学学习活动的积极性和好奇心。因此,首先要确定这节课的教学目标和这节课的教学重点,难点,要在教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境。这节课我以生活中旅游宁夏银川的常识引入主题,让学生在宁夏政区图上找出石嘴山的具体位置。很自然地就引起了学生的极大关注和兴趣,自觉地投入到学习中,这样就会有助于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,在课堂上让学生讲一讲,画一画,尽可能多的为学生创造自主学习、合作交流的机会,使学生成为学习的主体,促使他们主动参与、积极探究。
《平面直角坐标系》这课在教学上比较容易,课程中的概念性知识比较的多,比较容易安排,所以合理安排好各个知识点以及衔接,就成为上好课的关键。
一、创设情境,引入新课。
你能从右图上找出石嘴山的位置吗?
用现实例子来体现平面内找点--------通过在地图中找位置,让学生用一对数描述宁夏银川的位置,让学生理解在平面内确定点要用一对数。
接着通过影剧院的两张电影票中的3个问题让学生认识到在一个平面内确定一个物体的位置既要有方向还要有距离。这里的设计主要是让学生有一种认识在平面内描述位置要用两个数据,为下面强调“方向”做好准备,并且加入熟悉的同学的姓名,充分激发学生的兴趣。
二、共同参与,探索新知。
这里主要还是以书本上的步骤为主,通过一些多媒体的形象演示让学生更快的掌握。教学中主要是为了让学生更快更容易的理会知识。另外在引入上,我将书上的例子改变为电影票中的座位号,并将本班学生故事的形式编入到情境中,贴近现实生活,且引起了学生极大的兴趣。但是在重点的讲解上还是有些不到的地方,比如在引入上,时间用的较多;在概念知识的给予上,有些机械化,语言的启发上还是有待改进。学生对这类问题还不能很快的接受,应在充分的时间内给予各种变式题的训练,这样学生掌握的情况会更好。在讲解象限时,其实这里要是有一个小的动画或是有个红色的重点提示,让学生认识第一象限的所在,那就更完整了。
三、强化练习。
我这节课的练习巩固都是随着新知识一起给出了,想让学生学与练紧密相连,学会就要用上,从整体效果来看还可以,我设计了4组练习,主要是①找坐标;②找点;③象限内点符号知识。④现实运用。在这个练习中尤其是前3个练习是本节课的关键,在找坐标中我最满意的就是设置了”在电影院中找座位号”的小游戏,把教师当作电影院,在教室里建立了平面直角坐标系,让学生自己说出所在位置的坐标。让全班同学都能参与其中,不仅活跃了课堂气氛,还让学生能够更加深切的感受点的坐标。
本课设计了小结,让学生来总结本节课有那些收获和困惑,不仅归纳了知识点,还注重了数学思想方法在课堂中的渗透。拓宽了学生的知识面,培养了学生的发散思维能力和创新能力。
本课采用了"创设情境-提出问题-解决问题-应用拓展"的教学过程。这样的学程使学生不仅获得了书本上的知识,而且展示了知识形成过程及对知识理解、以及各个知识间的相互联系,帮助学生形成了知识体系,完善了认知结构,拓展知识应用。这样教学不仅使学生理解了学习内容,而且使学生掌握了学习的方法,更好地利用所学知识解决问题。
平面直角坐标系教学反思简短 篇11
在本节课的设计过程中还存在一些不足,比如:
1、整个教学活动中,老师可以适当进行“一题多变”、“一题多解”、“一法多用”。这样在夯实基础的前提下,善于将学生从思维定势中解脱出来,养成多角度、多侧面分析问题的习惯,以培养思维的广阔性、缜密性和创新性。对于教材中所列举的例题、习题,不能就题做题,要以题论法,以题为载体,阐述试题的条件加强、条件弱化、结论开放、变换结论、与其他试题的联系与区别,将试题的知识价值、教育价值一一解剖,达到做一题、会一片,懂一法、长一智。
2、思考题是为后续学习需要设置的,由于时间关系没有让学生仔细读题,还好这个题事先已经考虑到,而在练习提单中准备。思考题是结合下节课建立直角坐标系的不同点坐标不同而设置的,在多媒体课件中移动的是矩形,而听课后老师们都有不同的意见,有老师建议移动坐标系,经过课后教学思考发现,移动坐标系更能让学生感受到不同坐标系下点坐标的变化。
3、一般意义上的成绩较好的孩子受到的关爱与鼓励较多,成绩后进的孩子受到的批评与压力大些,期待得到帮助的份额大。“好孩子是夸出来的”、“脆弱的禾苗需要多一份阳光与温暖”、“对孩子,多一份期许,少一分责备”借助这些教学名言,教师在教学中能带给孩子们鼓励和自信,但从学生表情和回答问题中,却没有很好的洞察到那些最需要帮助的群体。
平面直角坐标系教学反思简短 篇12
1、定义:
平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系画平面直角坐标系时,轴、y轴上的单位长度通常应相同,但在实际应用中,有时会遇到取相同的单位长度有困难的情况,这时可灵活规定单位长度,但必须注意的是,同一坐标轴上相同长度的线段表示的单位数量相同、
2、各个象限内点的特征:
第一象限:(+,+)点P(x,y),则x>0,y>0;
第二象限:(-,+)点P(x,y),则x<0,y>0;
第三象限:(-,-)点P(x,y),则x<0,y<0;
第四象限:(+,-)点P(x,y),则x>0,y<0;
在x轴上:(x,0)点P(x,y),则y=0;
在x轴的正半轴:(+,0)点P(x,y),则x>0,y=0;
在x轴的负半轴:(-,0)点P(x,y),则x<0,y=0;
在y轴上:(0,y)点P(x,y),则x=0;
在y轴的正半轴:(0,+)点P(x,y),则x=0,y>0;
在y轴的负半轴:(0,-)点P(x,y),则x=0,y<0;
坐标原点:(0,0)点P(x,y),则x=0,y=0;
3、点到坐标轴的距离:
点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|、到坐标原点的距离为、
4.中点与两点间的距离:
已知点A(x1,y1),B(x2,y2)则AB=AB的中点P为
5、点的对称:
点P(m,n),关于x轴的对称点坐标是(m,-n),关于y轴的对称点坐标是(-m,n)关于原点的对称点坐标是(-m,-n)
6、平行线:
平行于x轴的直线上的点的特征:纵坐标相等;平行于y轴的直线上的点的特征:横坐标相等、
7、象限角的平分线:
第一、三象限角平分线上的点横、纵坐标相等,可记作、点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b,a)第二、四象限角平分线上的点横纵坐标互为相反数,可记作点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)
8、点的平移:
在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(,y);将点(x,y)向左平移a个单位长度,可以得到对应点(,y);将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)、注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。
以上就是《平面直角坐标系教学反思简短12篇》的全部内容,想了解更多内容,请点击直角坐标系教学反思查看或关注本网站内容更新,感谢您的关注!