88教案网

你的位置: 教案 > 高中教案 > 导航 > 第二章平面向量

高中牛顿第二定律教案

发表时间:2020-07-25

第二章平面向量。

一名优秀负责的教师就要对每一位学生尽职尽责,作为教师就要好好准备好一份教案课件。教案可以让学生能够听懂教师所讲的内容,有效的提高课堂的教学效率。关于好的教案要怎么样去写呢?小编经过搜集和处理,为您提供第二章平面向量,希望对您的工作和生活有所帮助。

第二章平面向量
本章内容介绍
向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.
向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.
本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念.(让学生对整章有个初步的、全面的了解.)

第1课时
§2.1平面向量的实际背景及基本概念
教学目标:
1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.
教学难点:平行向量、相等向量和共线向量的区别和联系.
学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.
教具:多媒体或实物投影仪,尺规
授课类型:新授课
教学思路:

一、情景设置:
如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了.
分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?
二、新课学习:
(一)向量的概念:我们把既有大小又有方向的量叫向量
(二)请同学阅读课本后回答:(可制作成幻灯片)
1、数量与向量有何区别?
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?
(三)探究学习
1、数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;
向量有方向,大小,双重性,不能比较大小.
2.向量的表示方法:
①用有向线段表示;
②用字母a、b
(黑体,印刷用)等表示;
③用有向线段的起点与终点字母:;
④向量的大小――长度称为向量的模,记作||.
3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.
向量与有向线段的区别:
(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作0.0的方向是任意的.
注意0与0的含义与书写区别.
②长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
6、相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.
7、共线向量与平行向量关系:
平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
(四)理解和巩固:
例1书本86页例1.
例2判断:
(1)平行向量是否一定方向相同?(不一定)
(2)不相等的向量是否一定不平行?(不一定)
(3)与零向量相等的向量必定是什么向量?(零向量)
(4)与任意向量都平行的向量是什么向量?(零向量)
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)
(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)
(7)共线向量一定在同一直线上吗?(不一定)
例3下列命题正确的是()?
A.a与b共线,b与c共线,则a与c也共线?
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点?
C.向量a与b不共线,则a与b都是非零向量?
D.有相同起点的两个非零向量不平行
解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.
例4如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.
变式一:与向量长度相等的向量有多少个?(11个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在)
变式三:与向量共线的向量有哪些?()
课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由.?
①向量与是共线向量,则A、B、C、D四点必在一直线上;?
②单位向量都相等;?
③任一向量与它的相反向量不相等;?
④四边形ABCD是平行四边形当且仅当=
⑤一个向量方向不确定当且仅当模为0;?
⑥共线的向量,若起点不同,则终点一定不同.
解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.
②不正确.单位向量模均相等且为1,但方向并不确定.
③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.④、⑤正确.⑥不正确.如图与共线,虽起点不同,但其终点却相同.
2.书本88页练习
三、小结:
1、描述向量的两个指标:模和方向.
2、平行向量不是平面几何中的平行线段的简单类比.
3、向量的图示,要标上箭头和始点、终点.

延伸阅读

第二章2.32.3.1平面向量基本定理讲义


2.3.1平面向量基本定理
预习课本P93~94,思考并完成以下问题
(1)平面向量基本定理的内容是什么?
(2)如何定义平面向量基底?
(3)两向量夹角的定义是什么?如何定义向量的垂直?

[新知初探]
1.平面向量基本定理
条件e1,e2是同一平面内的两个不共线向量
结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2
基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底
[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.
2.向量的夹角
条件两个非零向量a和b
产生过程
作向量=a,=b,则∠AOB叫做向量a与b的夹角

范围0°≤θ≤180°
特殊情况θ=0°a与b同向
θ=90°a与b垂直,记作a⊥b
θ=180°a与b反向

[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)任意两个向量都可以作为基底.()
(2)一个平面内有无数对不共线的向量都可作为表示该平面内所有向量的基底.()
(3)零向量不可以作为基底中的向量.()
答案:(1)×(2)√(3)√
2.若向量a,b的夹角为30°,则向量-a,-b的夹角为()
A.60°B.30°
C.120°D.150°
答案:B
3.设e1,e2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是()
A.e1,e2B.e1+e2,3e1+3e2
C.e1,5e2D.e1,e1+e2
答案:B
4.在等腰Rt△ABC中,∠A=90°,则向量,的夹角为______.
答案:135°

用基底表示向量

[典例]如图,在平行四边形ABCD中,设对角线=a,=b,试用基底a,b表示,.
[解]法一:由题意知,==12=12a,==12=12b.
所以=+=-=12a-12b,
=+=12a+12b,
法二:设=x,=y,则==y,
又+=,-=,则x+y=a,y-x=b,
所以x=12a-12b,y=12a+12b,
即=12a-12b,=12a+12b.
用基底表示向量的方法
将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;另一种是通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.
[活学活用]
如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,=a,=b.试以a,b为基底表示,,.
解:∵AD∥BC,且AD=13BC,
∴=13=13b.
∵E为AD的中点,
∴==12=16b.
∵=12,∴=12b,
∴=++
=-16b-a+12b=13b-a,
=+=-16b+13b-a=16b-a,
=+=-(+)
=-(+)=-16b-a+12b
=a-23b.

向量夹角的简单求解
[典例]已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹角是多少?a-b与a的夹角又是多少?
[解]如图所示,作=a,=b,且∠AOB=60°.
以,为邻边作平行四边形OACB,则=a+b,=a-b.
因为|a|=|b|=2,所以平行四边形OACB是菱形,又∠AOB=60°,所以与的夹角为30°,与的夹角为60°.
即a+b与a的夹角是30°,a-b与a的夹角是60°.

求两个向量夹角的方法
求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,根据向量夹角的概念确定夹角,再依据平面图形的知识求解向量的夹角.过程简记为“一作二证三算”.

[活学活用]
如图,已知△ABC是等边三角形.
(1)求向量与向量的夹角;
(2)若E为BC的中点,求向量与的夹角.
解:(1)∵△ABC为等边三角形,
∴∠ABC=60°.
如图,延长AB至点D,使AB=BD,则=,
∴∠DBC为向量与的夹角.
∵∠DBC=120°,
∴向量与的夹角为120°.
(2)∵E为BC的中点,∴AE⊥BC,
∴与的夹角为90°.
平面向量基本定理的应用
[典例]如图,在△ABC中,点M是BC的中点,点N在AC上,且AN=2NC,AM与BN相交于点P,求AP∶PM与BP∶PN.
[解]设=e1,=e2,
则=+=-3e2-e1,=+=2e1+e2.
∵A,P,M和B,P,N分别共线,
∴存在实数λ,μ使得=λ
=-λe1-3λe2,
=μ=2μe1+μe2.
故=+=-=(λ+2μ)e1+(3λ+μ)e2.
而=+=2e1+3e2,由平面向量基本定理,
得λ+2μ=2,3λ+μ=3,解得λ=45,μ=35.
∴=45,=35,
∴AP∶PM=4∶1,BP∶PN=3∶2.
[一题多变]
1.[变设问]在本例条件下,若=a,=b,试用a,b表示,
解:由本例解析知BP∶PN=3∶2,则=25,
=+=+25=b+25(-)
=b+45a-25b=35b+45a.
2.[变条件]若本例中的点N为AC的中点,其它条件不变,求AP∶PM与BP∶PN.
解:如图,设=e1,=e2,
则=+=-2e2-e1,=+=2e1+e2.
∵A,P,M和B,P,N分别共线,
∴存在实数λ,μ使得=λ
=-λe1-2λe2,
=μ=2μe1+μe2.
故=+=-=(λ+2μ)e1+(2λ+μ)e2.
而=+=2e1+2e2,由平面向量基本定理,
得λ+2μ=2,2λ+μ=2,解得λ=23,μ=23.
∴=23,=23,
∴AP∶PM=2,BP∶PN=2.
若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.

层级一学业水平达标
1.已知?ABCD中∠DAB=30°,则与的夹角为()
A.30°B.60°
C.120°D.150°
解析:选D如图,与的夹角为∠ABC=150°.
2.设点O是?ABCD两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是()
①与;②与;③与;④与.
A.①②B.①③
C.①④D.③④
解析:选B寻找不共线的向量组即可,在?ABCD中,与不共线,与不共线;而∥,∥,故①③可作为基底.
3.若AD是△ABC的中线,已知=a,=b,则以a,b为基底表示=()
A.12(a-b)B.12(a+b)
C.12(b-a)D.12b+a
解析:选B如图,AD是△ABC的中线,则D为线段BC的中点,从而=,即-=-,从而=12(+)=12(a+b).
4.在矩形ABCD中,O是对角线的交点,若=e1,=e2,则=()
A.12(e1+e2)B.12(e1-e2)
C.12(2e2-e1)D.12(e2-e1)
解析:选A因为O是矩形ABCD对角线的交点,=e1,=e2,所以=12(+)=12(e1+e2),故选A.
5.(全国Ⅰ卷)设D为△ABC所在平面内一点,=3,则()
A.=-13+43
B.=13-43
C.=43+13
D.=43-13
解析:选A由题意得=+=+13=+13-13=-13+43.
6.已知向量a,b是一组基底,实数x,y满足(3x-4y)a+(2x-3y)b=6a+3b,则x-y的值为______.
解析:∵a,b是一组基底,∴a与b不共线,
∵(3x-4y)a+(2x-3y)b=6a+3b,
∴3x-4y=6,2x-3y=3,解得x=6,y=3,∴x-y=3.
答案:3
7.已知e1,e2是两个不共线向量,a=k2e1+1-5k2e2与b=2e1+3e2共线,则实数k=______.
解析:由题设,知k22=1-5k23,∴3k2+5k-2=0,
解得k=-2或13.
答案:-2或13
8.如下图,在正方形ABCD中,设=a,=b,=c,则在以a,b为基底时,可表示为______,在以a,c为基底时,可表示为______.
解析:以a,c为基底时,将平移,使B与A重合,再由三角形法则或平行四边形法则即得.
答案:a+b2a+c
9.如图所示,设M,N,P是△ABC三边上的点,且=13,=13,=13,若=a,=b,试用a,b将,,表示出来.
解:=-
=13-23=13a-23b,
=-=-13-23=-13b-23(a-b)=-23a+13b,
=-=-(+)=13(a+b).
10.证明:三角形的三条中线共点.
证明:如图所示,设AD,BE,CF分别为△ABC的三条中线,令=a,=b.则有=b-a.
设G在AD上,且AGAD=23,则有=+=a+12(b-a)=12(a+b).
=-=12b-a.
∴=-=23-
=13(a+b)-a=13b-23a
=2312b-a=23.
∴G在BE上,同理可证=23,即G在CF上.
故AD,BE,CF三线交于同一点.
层级二应试能力达标
1.在△ABC中,点D在BC边上,且=2,设=a,=b,则可用基底a,b表示为()
A.12(a+b)B.23a+13b
C.13a+23bD.13(a+b)
解析:选C∵=2,∴=23.
∴=+=+23=+23(-)=13+23=13a+23b.
2.AD与BE分别为△ABC的边BC,AC上的中线,且=a,=b,则=()
A.43a+23bB.23a+43b
C.23a-23bD.-23a+23b
解析:选B设AD与BE交点为F,则=13a,=23b.所以=+=23b+13a,所以=2=23a+43b.
3.如果e1,e2是平面α内所有向量的一组基底,那么,下列命题中正确的是()
A.若存在实数λ1,λ2,使得λ1e1+λ2e1=0,则λ1=λ2=0
B.平面α内任一向量a都可以表示为a=λ1e1+λ2e2,其中λ1,λ2∈R
C.λ1e1+λ2e2不一定在平面α内,λ1,λ2∈R
D.对于平面α内任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对
解析:选BA中,(λ1+λ2)e1=0,∴λ1+λ2=0,即λ1=-λ2;B符合平面向量基本定理;C中,λ1e1+λ2e2一定在平面α内;D中,λ1,λ2有且只有一对.
4.已知非零向量,不共线,且2=x+y,若=λ(λ∈R),则x,y满足的关系是()
A.x+y-2=0B.2x+y-1=0
C.x+2y-2=0D.2x+y-2=0
解析:选A由=λ,得-=λ(-),
即=(1+λ)-λ.又2=x+y,
∴x=2+2λ,y=-2λ,消去λ得x+y=2.
5.设e1,e2是平面内的一组基底,且a=e1+2e2,b=-e1+e2,则e1+e2=________a+________b.
解析:由a=e1+2e2,b=-e1+e2,解得e1=13a-23b,e2=13a+13b.
故e1+e2=13a-23b+13a+13b
=23a+-13b.
答案:23-13
6.已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且|b|=2|a|,则向量a与c的夹角为________.
解析:由题意可画出图形,
在△OAB中,
因为∠OAB=60°,|b|=2|a|,
所以∠ABO=30°,OA⊥OB,
即向量a与c的夹角为90°.
答案:90°
7.设e1,e2是不共线的非零向量,且a=e1-2e2,b=e1+3e2.
(1)证明:a,b可以作为一组基底;
(2)以a,b为基底,求向量c=3e1-e2的分解式;
(3)若4e1-3e2=λa+μb,求λ,μ的值.
解:(1)证明:若a,b共线,则存在λ∈R,使a=λb,
则e1-2e2=λ(e1+3e2).
由e1,e2不共线,得λ=1,3λ=-2λ=1,λ=-23.
∴λ不存在,故a与b不共线,可以作为一组基底.
(2)设c=ma+nb(m,n∈R),则
3e1-e2=m(e1-2e2)+n(e1+3e2)
=(m+n)e1+(-2m+3n)e2.
∴m+n=3,-2m+3n=-1m=2,n=1.∴c=2a+b.
(3)由4e1-3e2=λa+μb,得
4e1-3e2=λ(e1-2e2)+μ(e1+3e2)
=(λ+μ)e1+(-2λ+3μ)e2.
∴λ+μ=4,-2λ+3μ=-3λ=3,μ=1.
故所求λ,μ的值分别为3和1.
8.若点M是△ABC所在平面内一点,且满足:=34+14.
(1)求△ABM与△ABC的面积之比.
(2)若N为AB中点,AM与CN交于点O,设=x+y,求x,y的值.
解:(1)如图,由=34+14可知M,B,C三点共线,
令=λ=+=+λ=+λ(-)=(1-λ)+λλ=14,所以S△ABMS△ABC=14,即面积之比为1∶4.
(2)由=x+y=x+y2,=x4+y,由O,M,A三点共线及O,N,C三点共线x+y2=1,x4+y=1x=47,y=67.

第二章平面向量第3课时2.2向量的减法教案


第3课时§2.2向量的减法
【教学目标】
一、知识与技能
1.掌握向量减法及相反向量的的概念;
2.掌握向量减法与加法的逆运算关系,并能正确作出已知两向量的差向量;
3.能用向量运算解决一些具体问题。
二、过程与方法
通过知识发生发展过程教学使学生感受和领悟数学发展的过程及其思想.
三、情感、态度与价值观
(1)在学完向量加法后再学习向量减法指导学生辨证的看待和解决问题。
(2)数学与生活的联系能够引导学生注意用联系的观点看问题
【教学重点】向量减法定义和法则
【教学难点】向量减法法则的应用
【教学过程】
一、复习:
1.向量的加法法则。
2.数的运算:减法是加法的逆运算
二、讲解新课:
1.相反向量:与长度相等,方向相反的向量,叫做的相反向量,记作。
说明:(1)规定:零向量的相反向量是零向量。
(2)性质:;.
2.向量的减法:求两个向量差的运算,叫做向量的减法。表示.
3.向量减法的法则:
已知如图有,,求作.
(1)三角形法则:在平面内任取一点,作,,则.

说明:可以表示为从的终点指向的终点的向量(,有共同起点).
(2)平行四边形:在平面内任取一点,作,,
则.
思考:若,怎样作出?
四、例题分析:
例1、如图,是平行四边形的对角线的交点,若,,
试证明..
例2、用向量方法证明:对角线互相平行的四边形是平行四边形

例3、试证:对任意向量,都有.

五、课时小结:
1.理解向量加法的概念及向量加法的几何意义;
2.熟练掌握向量加法的平行四边形法则和三角形法则

第二章平面向量第2课时2.2向量的加法教案


第2课时§2.2向量的加法
【教学目标】
一、知识与技能
(1)理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作两个向量的和;
(2)掌握两个向量加法的交换律和结合律,并会用它们进行向量运算
二、过程与方法
从物体位移变化规律的探知中总结出向量加法规律
三、情感、态度与价值观
感受数学和生活的联系,增强学习数学的兴趣
【教学重点难点】::1.如何作两向量的和向量;
2.向量加法定义的理解。
【教学过程】
一、复习:
1.向量的概念、表示法。
2.平行向量、相等向量的概念。
3.已知点是正六边形的中心,则下列向量组中含有相等向量的是()
()、、、()、、、
()、、、()、、、

二、创设情景
利用向量的表示,从景点O到景点A的位移为OA,从景点A到景点B的位移为AB,那么经过这两次位移后游艇的合位移是OB,向量OA,AB,OB三者之间有何关系?
三、讲解新课:
1.向量的加法:求两个向量和的运算叫做向量的加法。表示:
作法:在平面内任取一点(如图(2)),作,,则.

(1)(2)
2.向量加法的法则:
(1)三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。表示:.
(2)平行四边形法则:以同一点为起点的两个已知向量,为邻边作平行四边形ABCD,则以为起点的对角线就是与的和,这种求向量和的方法称为向量加法的平行四边形法则。
3.向量的运算律:
交换律:.
结合律:.
说明:多个向量的加法运算可按照任意的次序与任意的组合进行:
例如:;.
四、例题分析:
例1、如图,一艘船从点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,求船实际航行速度的大小与方向(用与流速间的夹角表示)。

例2、已知矩形中,宽为,长为,,,,
试作出向量,并求出其模的大小。
例3、一架飞机向北飞行千米后,改变航向向东飞行千米,
则飞行的路程为400千米;两次位移的和的方向为北偏东,
大小为千米.

例4、在长江南岸某渡口处,江水以12.5km/h的速度向东流,渡船的速度为25km/h.渡船要垂直地度过长江,其航向应如何确定?

变式:若渡船以25km/h的速度按垂直于河岸的航向航行,那么受水流影响,渡船的实际航向如何?

例5、已知两个力,的夹角是直角,且知它们的合力与的夹角是,
牛,求和的大小

五、课时小结:
1.理解向量加法的概念及向量加法的几何意义;
2.熟练掌握向量加法的平行四边形法则和三角形法则

高中数学必修四第二章平面向量章末小结导学案


第二章平面向量章末小结
【本章知识体系】
【题型归纳】
专题一、平面向量的概念及运算
包含向量的有关概念、加法、减法、数乘。向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.
1、1.AB→+AC→-BC→+BA→化简后等于()
A.3AB→B.AB→
C.BA→D.CA→
2、在平行四边形ABCD中,OA→=a,OB→=b,OC→=c,OD→=d,则下列运算正确的是()
A.a+b+c+d=0
B.a-b+c-d=0
C.a+b-c-d=0
D.a-b-c+d=0
3、已知圆O的半径为3,直径AB上一点D使AB→=3AD→,E、F为另一直径的两个端点,则DE→DF→=()
A.-3B.-4
C.-8D.-6
4、如图,在正方形ABCD中,设AB→=a,AD→=b,BD→=c,则在以a,b为基底时,AC→可表示为________,在以a,c为基底时,AC→可表示为________.

5、下列说法正确的是()
A.两个单位向量的数量积为1
B.若ab=ac,且a≠0,则b=c
C.AB→=OA→-OB→
D.若b⊥c,则(a+c)b=ab

专题二、平面向量的坐标表示及坐标运算
向量的坐标表示及运算强化了向量的代数意义。若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。

6、已知向量a=(1,n),b=(-1,n),若2a-b与b垂直,则|a|等于()
A.1B.2
C.2D.4

7、设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a-c),d的有向线段首尾相接能构成四边形,则d=()
A.(2,6)B.(-2,6)
C.(2,-6)D.(-2,-6)

8、已知a=(1,1),b=(1,0),c满足ac=0,且|a|=|c|,bc0,则c=________.

专题三、平面向量的基本定理
平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。
9、已知AD、BE分别为△ABC的边BC、AC上的中线,设AD→=a,BE→=b,则BC→等于()
A.43a+23b
B.23a+43b
C.23a-43b
D.-23a+43b

10、在平面直角坐标系中,若O为坐标原点,则A,B,C三点在同一直线上的等价条件为存在唯一的实数λ,使得OC→=λOA→+(1-λ)OB→成立,此时称实数λ为“向量OC→关于OA→和OB→的终点共线分解系数”.若已知P1(3,1),P2(-1,3),且向量OP3→与向量a=(1,1)垂直,则“向量OP3→关于OP1→和OP2→的终点共线分解系数”为()
A.-3B.3C.1D.-1

11、已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2AC→+CB→=0,
(1)用OA→,OB→表示OC→;
(2)若点D是OB的中点,证明四边形OCAD是梯形.
解:

12、如图,平行四边形ABCD中,AB→=a,AD→=b,H、M是AD、DC的中点,BC上点F使BF=13BC.
(1)以a、b为基底表示向量AM→与HF→;
(2)若|a|=3,|b|=4,a与b的夹角为120°,求AM→HF→.

专题四、平面向量的数量积
求平面向量的数量积的方法有两个:一个是根据数量积的定义ab=|a||b|cosθ,其中θ为向量a,b的夹角;另一个是根据坐标法,坐标法是a=(,),b=(,)时,ab=+。利用数量积可以求长度,也可判断直线与直线的关系(相交的夹角以及垂直),还可以通过向量的坐标运算转为代数问题解决.
13、在直角坐标系xOy中,AB→=(2,1),AC→=(3,k),若三角形ABC是直角三角形,则k的可能值个数是()
A.1B.2C.3D.4

14、A,B,C,D为平面上四个互异点,且满足(DB→+DC→-2DA→)(AB→-AC→)=0,则△ABC的形状是()
A.直角三角形B.等腰三角形
C.等腰直角三角形D.等边三角形

15、已知|a|=3,|b|=4,|c|=23,且a+b+c=0,则ab+bc+ca=________.

16.已知|a|=1,|b|=1,a与b的夹角为120°,则向量2a-b在向量a+b方向上的投影为________.

17.如图所示,在正方形ABCD中,已知|AB→|=2,若N为正方形内(含边界)任意一点,则AB→AN→的最大值是________.

18、设平面上向量a=(cosα,sinα)(0≤α2π),b=(-12,32),a与b不共线.
(1)证明向量a+b与a-b垂直;
(2)当两个向量3a+b与a-3b的模相等时,求角α.

19、已知a=(1,2),b=(1,λ),分别确定实数λ的取值范围,使得:(1)a与b的夹角为直角;(2)a与b的夹角为钝角.

专题五、平面向量的应用
用向量的方法研究代数问题与一些几何问题,往往能有一种简易的奇妙效果,关键是建立几何与向量问题的联系,利用向量的运算。
20、如图,在平行四边形ABCD中,E为对角线BD上的一点,且BE:ED=2:3,连接CE并延长交AB与F,求AF:FB的值。

21、在平面直角坐标系中,A(1,1)、B(2,3)、C(s,t)、P(x,y),△ABC是等腰直角三角形,B为直角顶点.
(1)求点C(s,t);
(2)设点C(s,t)是第一象限的点,若AP→=AB→-mAC→,m∈R,则m为何值时,点P在第二象限?