88教案网

你的位置: 教案 > 高中教案 > 导航 > 高三物理教案:《电磁感应综合与拓展》教学设计

高中物理电磁感应教案

发表时间:2021-12-10

高三物理教案:《电磁感应综合与拓展》教学设计。

教案课件是老师需要精心准备的,规划教案课件的时刻悄悄来临了。只有规划好教案课件工作计划,才能规范的完成工作!你们了解多少教案课件范文呢?以下是小编收集整理的“高三物理教案:《电磁感应综合与拓展》教学设计”,供您参考,希望能够帮助到大家。

本文题目:高三物理教案:电磁感应综合与拓展

一、知识地图

根据考纲的要求,本章内容可以分成这样几部分,即:电磁感应现象、楞次定律;法拉第电磁感应定律、自感;电磁感应与电路规律的综合应用;电磁感应与力学规律的综合应用。其中楞次定律和法拉第电磁感应定律是电磁感应这一章中最重要、最基本的定律,电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用,也是复习的重点和难点。另外,电磁感应知识在实际中的应用广泛如:自感、日光灯原理、磁悬浮原理、电磁阻尼、超导技术应用等。

二、应考指南

电磁感应是高中物理中的主干和核心知识之一,本章从研究电磁感应现象入手,通过实验总结出了产生感应电流的条件和判定感应电流方向的一般方法——楞次定律,给出了确定感应电动势大小的一般规律——法拉第电磁感应定律.楞次定律和法拉第电磁感应定律是解决电磁感应问题的重要依据,复习中必须深入理解和熟练掌握;同时由于电磁感应的题型大多与实际问题相联系,往往综合性较强,与前面的知识联系较多,涉及到力和运动、动量、能量、直流电路、安培力等多方面的知识,解题时一般要从以下两个方面分析:(1)受力情况、运动情况的动态分析。(2)功能分析,电磁感应过程往往涉及多种能量形式的转化。力学与本章内容结合的题目以及电学与本章结合的题目是复习中应强化训练的重要内容.本章重在考查学生综合运用知识、分析解决实际问题的能力,综合性强,能力要求高,在高考中常以压轴题出现。电磁感应的图像问题也是高考中常见的题型之一。

全章蕴含了丰富的科学思维方法,如:归纳与演绎、抽象与概括、能的观点、等效的方法、数学方法等。

三、好题精析

例1、近期《科学》中文版的文章介绍了一种新技术——航天飞缆,航天飞缆是用柔性

缆索将两个物体连接起来在太空飞行的系统。飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理“太空垃圾”等。从1967年至1999年的17次试验中,飞缆系统试验已获得部分成功。该系统的工作原理可用物理学的基本定律来解释。

下图为飞缆系统的简化模型示意图,图中两个物体P,Q的质量分别为mp,mQ,柔性金属缆索长为Z,外有绝缘层,系统在近地轨道作圆周运动,运动过程中Q距地面高为h。设缆索总保持指向地心,P的速度为υp。已知地球半径为R,地面的重力加速度为g。

(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为B,方向垂直

于纸面向外。设缆索中无电流,问缆索P、Q哪端电势高?此问中可认为缆索各处的速度均近似等于υp,求P、Q两端的电势差;

(2)设缆索的电阻为R1,如果缆索两端物体P、Q通过周围的电离层放电形成电流,相应的电阻为R2,求缆索所受的安培力多大;

(3)求缆索对Q的拉力FQ。

例2、如图所示,固定于水平桌面上的金属框架cdef,处在竖直向下的匀强磁场中,金属棒ab搁在框架上,可无摩擦滑动。此时,adeb构成一个边长为l的正方形。棒的电阻为r,其余部分电阻不计。开始时磁感强度为B0。

⑴若从t=0时刻起,磁感强度均匀增加,每秒增量为k,同时保持棒静止。求棒中的感应电流。在图上标出感应电流的方向。

⑵在上述⑴情况中。始终保持棒静止,当t=t1s末时需加的垂直于棒的水平拉力为多大?

⑶若从t=0时刻起,磁感强度逐渐减小,当棒以恒定速度v。向右做匀速运动时,可使棒中不产生感应电流,则磁感强度应怎样随时间变化(写出B与t的关系式)。

例3、图中a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直于导轨所在平面(纸面)向里。导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。x1 y1与x2 y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为和m1和m2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R。F为作用于金属杆x1y1上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

例4、如图所示,两根竖直放置在绝缘地面上的金属导轨的上端,接有一个电容为C的电容器,框架上有一质量为m、长为l的金属棒,平行于地面放置,与框架接触良好且无摩擦,棒离地面的高度为h,磁感强度为B的匀强磁场与框架平面垂直.开始时,电容器不带电.将金属棒由静止释放,问:棒落地时的速度为多大?(整个电路电阻不计)

例5、在有线电话网中,电话机是通过两条导线和电信局的交换机传送和接收电信号。如果不采取措施,发话者的音频信号必会传到自己的受话器中,使自己听到自己的讲话声音,这就是“侧音”。较大的侧音会影响接听对方的讲话,故必须减小或消除。如图所示是一电话机的消“侧音”电路与交换机的连接示意图。图中的两个变压器是完全相同的,a、b、c、d、e、f六个线圈的匝数相同。打电话时,对着话筒发话,把放大后的音频电压加到变压器的线圈a,从线圈c和b输出大小相等但随声频变化的电压,c两端的电压产生的电流IL通过线圈e和两导线L、电信局的交换机构成回路,再通过交换机传到对方电话机,对方就听到发话者的声音。同时由于线圈e中有电流通过,在线圈f中也会有电压输出,放大后在自己的电话机的受话器上发出自己的讲话声,这就是上面讲的“侧音”。为了消除这个侧音,可以把线圈b的电压加在线圈d上,并通过R调节d中的电流Id。那么为达到消侧音的目的,1应与( )相接;4应与( )相接,并使Id ( )IL(填“小于”、“大于”、或“等于”)。对方讲话时,音频电压通过交换机和两条导线L加到本机,那么通过R的电流为多少?

四、变式迁移

1、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:

(1)在运动中产生的焦耳热最多是多少.

(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?

2、如下图所示,固定在竖直平面内的两根平行金属导轨的间距为L,上端连一电容为C的电容器,其耐压足够大。空间有垂直于导轨平面的匀强磁场,其磁感强度为B。一根质量为m的金属杆PP′水平地卡在导轨上,释放后,此杆沿导轨无摩擦地下滑。经过一段时间,到图示时刻其下落速度为v1。假定导轨足够长,导轨、金属杆和连接导线的电阻均可忽略。

试求:金属板PP′的速度从v1变化到v2的过程中,电容器吸收的能量△ E。

高三物理教案:电磁感应综合与拓展参考答案

三、好题精析

例1、〖解析〗(1)缆索的电动势 E=Blv0 , P、Q两点电势差UPQ=BlvP,,P点电势高

缆索电流 安培力

(2)Q的速度设为vQ,Q受地球引力和缆索拉力FQ作用

P、Q角速度相等 ②

又 ③

联立①、②、③解得

〖点评〗本题综合性较强,是电磁感应、万有引力、向心力等知识的综合,同时考察考生理解能力、推理能力、分析综合能力和考查考生信息摄取、提炼、加工能力及构建物理模型的抽象概括能力.具有一定的难度。

例2、〖解析〗⑴磁感强度均匀增加时,感应电动势 ,感应电流 ,由楞次定律,判定感应电流逆时针方向。

⑵t=t1s 末棒静止,水平方向受拉力F外和安培力F安,F外=F安=BIl,又B=B0+kt1,故F外= (B0+kt1) 。

⑶棒中不产生感应电流,由法拉第电磁感应定律 ,知

,也就是回路内总磁通量保持不变。而在t时刻的磁通量φ=BS=Bl(l+vt),由φ0=φ可得:B0l2=B (l+vt)l , .

〖点评〗考查法拉第电磁感应定律、楞次定律、闭合电路欧姆定律、安培力和磁通量等电磁学的重要概念和规律,在能力上考查综合分析问题能力和应用数学处理物理问题的能力。

本题第⑶问中回路面积和磁场都变化,以往考题要么回路面积不变,磁场均匀变化,要么磁场不变,回路面积发生变化。在第⑶问中,其实有两个电动势,一是ab棒切割磁感线产生的向上的感应电动势,二是由磁场变化产生的感应电动势,这两个电动势方向相反,从而回路本身无电流。

在第⑶问中,若磁场仍以k均匀增加,且ab棒向右匀速运动,则t时刻回路的总电动势E等于ba棒切割磁感线产生的Eba与磁场增强产生的感应电动势E法之和。

, ,

例3、〖解析〗解法1:设杆向上的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。由法拉第电磁感应定律,回路中的感应电动势的大小WWW.Jab88.COM

回路中的电流 ②

电流沿顺时针方向。两金属杆都要受到安培力作用,作用于杆x1y1的安培力为

方向向上,作用于杆x2y2的安培力为 ④

方向向下,当杆作匀速运动时,根据牛顿第二定律有

解以上各式得 ⑥ ⑦

作用于两杆的重力的功率的大小 ⑧

电阻上的热功率 ⑨

由⑥⑦⑧⑨式,可得

解法2:回路中电阻上的热功率等于运动过程中克服安培力做功功率,当杆作匀速运动时,根据牛顿第二定律有

电路中克服安培力做功功率为:

将 代入可得

〖点评〗本题是双杆的平衡问题,难点在于金属棒不等长即导轨不等间距。当杆作匀速运动时,安培力合力向下,对整体受力分析,处于平衡状态,列出方程就能顺利求解I与v值。

例4、〖解析〗本题要抓几个要点:①电路中有无电流?②金属棒受不受安培力作用?若有电流,受安培力作用,它们怎样计算?③金属棒做什么运动?

金属棒向下加速,因而电路中有给电容器充电形成的电流,金属棒除了重力外,还受安培力作用。在很短一段时间△t内,电容极板上增加了电量ΔQ时,电路中瞬间电流为I= ,

而Q=CUc,△Q=C△Uc,又因电路无电阻,故电源路端电压U= E=Blv,而U=Uc,有

△Uc=BL△v.∴I= = CBla①

根据牛顿第二定律:mg-B?I?l=ma②由①②得a= ,a=恒量,所以金属棒做匀加速运动.落地瞬时速度v=

〖点评〗本题中电流强度的确定是关键,是本题的难点,突破了这一难点,以后的问题即可迎刃而解.金属棒下落过程中克服安培力做功,使金属棒的机械能减少,转化为电能,储存在电容器里,故机械能不守恒.金属棒下落中减少的重力势能一部分转化的电能,还有一部分转化为动能.

例5、解析:发话时,假定某一时刻通过线圈a的电流是从上端流入,而且增大,则在线圈c和b上感应的电压都是上正下负,e中形成的电流在变压器铁芯中产生的磁场的磁感线是逆时针方向的;1和3,2和4相接时,b的感应电压在d中形成的电流在铁芯中产生的磁感线是顺时针的,由于e和d的匝数相同,只要调节R使e、d中的电流强度相等,则e和d产生的磁场就完全抵消,通过线圈f的磁通量始终为零,f中没有感应电动势,受话器中没有发话者的声音,从而消除侧音。对方发话时,从交换机传来的音频电压加到电话机上,假设某一时刻在线圈e和c中形成的电流是从c的下端流入且增大,则b线圈的1端为负,d线圈的3端为负,感应电压值相同,在bdR回路中没有电流,d中不会产生磁场抵消e的磁场,f中有e产生的磁场的磁感线通过,磁通量会发生变化,产生感应电动势,放大后在受话器中发出对方的声音。

相关阅读

高三物理教案:《电磁感应》教学设计


作为优秀的教学工作者,在教学时能够胸有成竹,作为高中教师就需要提前准备好适合自己的教案。教案可以让学生能够听懂教师所讲的内容,帮助高中教师能够井然有序的进行教学。那么怎么才能写出优秀的高中教案呢?下面是由小编为大家整理的“高三物理教案:《电磁感应》教学设计”,仅供参考,希望能为您提供参考!

本文题目:高三物理教案:电磁感应复习学案

1、电磁感应属于每年重点考查的内容之一,试题综合程度高,难度较大。

2、本章的重点是:电磁感应产生的条件、磁通量、应用楞次定律和右手定则判断感应电流的方向、感生、动生电动势的计算。公式E=Blv的应用,平动切割、转动切割、单杆切割和双杆切割,常与力、电综合考查,要求能力较高。图象问题是本章的一大热点,主要涉及ф-t图、B-t图、和I-t图的相互转换,考查楞次定律和法拉第电磁感应定律的灵活应用。

3、近几年高考对本单元的考查,命题频率较高的是感应电流产生的条件和方向的判定,导体切割磁感线产生感应电动势的计算,电磁感应现象与磁场、电路、力学等知识的综合题,以及电磁感应与实际相结合的问题,如录音机、话筒、继电器、日光灯的工作原理等.

第一课时 电磁感应现象 楞次定律

【教学要求】

1、通过探究得出感应电流与磁通量变化的关系,并会叙述楞次定律的内容。

2、通过实验过程的回放分析,体会楞次定律内容中“阻碍”二字的含义,感受“磁通量变化”的方式和途径,并用来分析一些实际问题。

【知识再现】

一、电磁感应现象—感应电流产生的条件

1、内容:只要通过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生.

2、条件: ①____________; ②____________.

二、感应电流方向——楞次定律

1、感应电流方向的判定:方法一:右手定则 ; 方法二:楞次定律。

2、楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

3、掌握楞次定律,具体从下面四个层次去理解:

①谁阻碍谁——感应电流的磁通量阻碍原磁场的磁通量.

②阻碍什么——阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.

③如何阻碍——原磁通量增加时,感应电流磁场方向与原磁场方向相反;当原磁通量减少时,感应电流磁场方向与原磁场方向相同,即“增反减同”.

④阻碍的结果——阻碍并不是阻止,结果是增加的还增加,减少的还减少.

知识点一磁通量及磁通量的变化

磁通量变化△ф=ф2-ф1,一般存在以下几种情形:

①投影面积不变,磁感强度变化,即△ф=△B?S;

②磁感应强度不变,投影面积发生变化,即△ф=B?△S。其中投影面积的变化又有两种形式:

A.处在磁场的闭合回路面积发生变化,引起磁通量变化;

B.闭合回路面积不变,但与磁场方向的夹角发生变化,从而引起投影面积变化.

③磁感应强度和投影面积均发生变化,这种情况少见。此时,△ф=B2S2-B1S1;注意不能简单认为△ф=△B?△S。

【应用1】如图所示,平面M的面积为S,垂直于匀强磁场B,求水平面M由此位置出发绕与B垂直的轴转过60°和转过180°时磁通量的变化量。

导示:初位置时穿过M的磁通量为:ф1=B?S;

当平面M转过60°后,磁感线仍由下向上穿过平面,且θ=60°所以ф2=B?S cos 60°=BS/2。

当平面转过180°时,原平面的“上面”变为“下面”,而“下面”则成了“上面”,所以对平面M来说,磁感线穿进、穿出的顺序刚好颠倒,为了区别起见,我们规定M位于起始位置时其磁通量为正值,则此时其磁通量为负值,即:ф3=-BS

由上述得,平面M转过60°时其磁通量变化为:

△ф1=│ф2-ф1│=BS/2

平面M转过180°时其磁通量变化为:

△ф2=│ф3-ф1│=2BS。

1、必须明确S的物理意义。

2、必须明确初始状态的磁通量及其正负(一定要注意在转动过程中,磁感线相对于面的穿入方向是否发生变化)。

3、注意磁通量与线圈匝数无关。

知识点二安培定则、左手定则、右手定则、楞次定律的比较

(1)应用现象

(2)应用区别:关键是抓住因果关系

①因电而生磁(I→B) →安培定则

②因动而生电(v、B→I安)→右手定则

③因电而受力(I、B→F安)→左手定则

【应用2】两个线圈套在同一个铁芯上,线圈的绕向在图中已经表示.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处于垂直纸面向外的匀强磁场中,下列说法中正确的是 ( )

A.当金属棒向右匀速运动时,a点电势高于b点,c点电势高于d点

B.当金属棒向右匀速运动时,b点电势高于a点,c点与d点为等电势

C.当金属棒向右加速运动时,b点电势高于a点,c点电势高于d点

D.当金属棒向右加速运动时,b点电势高于a点,d点电势高于c点

导示:选择BD。在图中ab棒和右线圈相当于电源。当导体棒向右匀速运动时,根据右手定则,可以判断b点电势高于a点,此时通过右线圈在磁通量没有变化,所以,右线圈中不产生感应电流,c点与d点为等电势。

当金属棒向右加速运动时,b点电势高于a点,此时通过右线圈在磁通量逐渐增大,根据楞次定律可以判定d点电势高于c点。

类型一探究感应电流产生的条件

【例1在通电直导线A、B周围有一个矩形线圈abcd,要使线圈中产生感应电流,你认为有哪些方法?

导示: 当AB中电流大小、方向发生变化、abcd线圈左右、上下平移、或者绕其中某一边转动等都可以使线圈中产生感应电流。

类型二感应电流方向的判定

判定感应电流方向的步骤:

①首先明确引起感应电流的原磁场方向.

②确定原磁场的磁通量是如何变化的.

③根据楞次定律确定感应电流的磁场方向——“增反减同”.

④利用安培定则确定感应电流的方向.

【例2导线框abcd与导线在同一平面内,直导线通有恒定电流I,当线圈由左向右匀速通过直导线时,线圈中感应电流的方向是( )

A.先abcd后dcba,再abcd

B.先abcd,后dcba

C.始终dcba

D.先dcba,后abcd,再dcba

导示:选择D。当线圈由左向右匀速通过直导线时,穿过线圈的磁通量先向外增大,当导线位于线圈中间时磁通量减小为O;然后磁通量先向里增大,最后又减小到O。

类型三楞次定律推论的应用

楞次定律的“阻碍”含义,可以推广为下列三种表达方式:

①阻碍原磁通量(原电流)变化.(线圈的扩大或缩小的趋势)—“增反减同”

②阻碍(磁体的)相对运动,(由磁体的相对运动而引起感应电流).—“来推去拉”

③从能量守恒角度分析:能量的转化是通过做功来量度的,这一点正是楞次定律的根据所在,楞次定律是能量转化和守恒定律在电磁感应现象中的具体体现。

【例3光滑固定导体M、N水平放置,两根导体捧P、Q平行放于导轨上,形成一个闭合回路.当一条形磁铁从高处下落接近回路时( )

A、P、Q将互相靠拢

B、P、Q将互相远离

C、磁铁的加速度仍为g

D、磁铁的加速度小于g

导示: 方法一:设磁铁下端为N极,如图所示,根据楞次定律可判断P、Q中的感应电流方向。根据左手定则可判断P、Q所受安培力的方向。可见P、Q将互相靠拢。由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到反作用力,从而加速度小于g。当磁铁下端为S极时,根据类似的分析可得到相同的结果。所以,本题应选A、D。

方法二:根据楞次定律知:“感应电流的磁场总要阻碍原磁通量的变化”,为阻碍原磁通量的增加,P、Q只有互相靠拢来缩小回路面积,故A正确,B错。楞次定律可以理解为感应电流的磁场总要阻碍导体间的相对运动,可把PQMN回路等看为一个柱形磁铁,为了阻碍磁铁向下运动,等效磁铁的上面必产生一个同名磁极来阻碍磁铁的下落,故磁铁的加速度必小于g,故C错D正确。

1、如图是某同学设计的用来测量风速的装置。请解释这个装置是怎样工作的。

2、已知一灵敏电流计,当电流从正接线柱流入时,指针向正接线柱一侧偏转,现把它与线圈串联接成图示电路,当条形磁铁按如图所示情况运动时,以下判断正确的是( )

A.甲图中电流表偏转方向向右

B.乙图中磁铁下方的极性是N极

C.丙图中磁铁的运动方向向下

D.丁图中线圈的绕制方向与前面三个相反

3、(赣榆县教研室2008年期末调研)如甲图所示,

光滑的水平桌面上固定着一根绝缘的长直导线,可以自由移动的矩形导线框abcd靠近长直导线放在桌面上。当长直导线中的电流按乙图所示的规律变化时(甲图中电流所示的方向为正方向),则()

A.在t2时刻,线框内没有电流,线框不受力

B.t1到t2时间内,线框内电流的方向为abcda

C.t1到t2时间内,线框向右做匀减速直线运动

D.t1到t2时间内,线框受到磁场力对其做负功

高三物理教案:电磁感应复习学案答案:1.略 2.ABD 3.BD

高三物理教案:《电磁感应教案》教学设计


作为杰出的教学工作者,能够保证教课的顺利开展,作为教师就要好好准备好一份教案课件。教案可以让讲的知识能够轻松被学生吸收,让教师能够快速的解决各种教学问题。关于好的教案要怎么样去写呢?下面的内容是小编为大家整理的高三物理教案:《电磁感应教案》教学设计,仅供参考,欢迎大家阅读。

本文题目:高三物理教案:电磁感应教案

【教学目标】

1、知识与技能:

(1)、知道感应电动势,及决定感应电动势大小的因素。

(2)、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、 。

(3)、理解法拉第电磁感应定律的内容、数学表达式。

(4)、知道E=BLvsinθ如何推得。

(5)、会用 解决问题。

2、过程与方法

(1)、通过学生实验,培养学生的动手能力和探究能力。

(2)、通过推导闭合电路,部分导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。

3、情感态度与价值观

(1)、从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想。

(2)、通过比较感应电流、感应电动势的特点,引导学生忽略次要矛盾、把握主要矛盾。

【教学重点】法拉第电磁感应定律。

【教学难点】感应电流与感应电动势的产生条件的区别。

【教学方法】实验法、归纳法、类比法

【教具准备】

多媒体课件、多媒体电脑、投影仪、检流计、螺线管、磁铁。

【教学过程】

一、复习提问:

1、在电磁感应现象中,产生感应电流的条件是什么?

答:穿过闭合回路的磁通量发生变化,就会在回路中产生感应电流。

2、恒定电流中学过,电路中存在持续电流的条件是什么?

答:电路闭合,且这个电路中一定有电源。

3、在发生电磁感应现象的情况下,用什么方法可以判定感应电流的方向?

答:由楞次定律或右手定则判断感应电流的方向。

二、引入新课

1、问题1:既然会判定感应电流的方向,那么,怎样确定感应电流的强弱呢?

答:既然有感应电流,那么就一定存在感应电动势.只要能确定感应电动势的大小,根据闭合电路欧姆定律就可以确定感应电流大小了.

2、问题2:如图所示,在螺线管中插入一个条形磁铁,问

①、在条形磁铁向下插入螺线管的过程中,该电路中是否都有电流?为什么?

答:有,因为磁通量有变化

②、有感应电流,是谁充当电源?

答:由恒定电流中学习可知,对比可知左图中的虚线框内线圈部分相当于电源。

③、上图中若电路是断开的,有无感应电流电流?有无感应电动势?

答:电路断开,肯定无电流,但仍有电动势。

3、产生感应电动势的条件是什么?

答:回路(不一定是闭合电路)中的磁通量发生变化.

4、比较产生感应电动势的条件和产生感应电流的条件,你有什么发现?

答:在电磁感应现象中,不论电路是否闭合,只要穿过回路的磁通量发生变化,电路中就有感应电动势,但产生感应电流还需要电路闭合,因此研究感应电动势比感应电流更有意义。(情感目标)

本节课我们就来一起探究感应电动势

三、进行新课

(一)、探究影响感应电动势大小的因素

(1)探究目的:感应电动势大小跟什么因素有关?(学生猜测)

(2)探究要求:

①、将条形磁铁迅速和缓慢的插入拔出螺线管,记录表针的最大摆幅。

②、迅速和缓慢移动导体棒,记录表针的最大摆幅。

③、迅速和缓慢移动滑动变阻器滑片,迅速和缓慢的插入拔出螺线管,分别记录表针的最大摆幅;

(3)、探究问题:

问题1、在实验中,电流表指针偏转原因是什么?

问题2:电流表指针偏转程度跟感应电动势的大小有什么关系?

问题3:在实验中,快速和慢速效果有什么相同和不同?

(4)、探究过程

安排学生实验。(能力培养)

教师引导学生分析实验,(课件展示)回答以上问题

学生甲:穿过电路的Φ变化 产生E感 产生I感.

学生乙:由全电路欧姆定律知I= ,当电路中的总电阻一定时,E感越大,I越大,指针偏转越大。

学生丙:磁通量变化相同,但磁通量变化的快慢不同。

可见,感应电动势的大小跟磁通量变化和所用时间都有关,即与磁通量的变化率有关.

把 定义为磁通量的变化率。

上面的实验,我们可用磁通量的变化率来解释:

学生甲:实验中,将条形磁铁快插入(或拔出)比慢插入或(拔出)时, 大,I感大,

E感大。

实验结论:电动势的大小与磁通量的变化快慢有关,磁通量的变化越快电动势越大。磁通量的变化率越大,电动势越大。

(二)、法拉第电磁感应定律

从上面的实验我们可以发现, 越大,E感越大,即感应电动势的大小完全由磁通量的变化率决定。精确的实验表明:电路中感应电动势的大小,跟穿过这一电路磁通量的变化率成正比,即E∝ 。这就是法拉第电磁感应定律。

(师生共同活动,推导法拉第电磁感应定律的表达式)(课件展示)

E=k

在国际单位制中,电动势单位是伏(V),磁通量单位是韦伯(Wb),时间单位是秒(s),可以证明式中比例系数k=1,(同学们可以课下自己证明),则上式可写成

E=

设闭合电路是一个N匝线圈,且穿过每匝线圈的磁通量变化率都相同,这时相当于n个单匝线圈串联而成,因此感应电动势变为

E=n

1.内容:电动势的大小与磁通量的变化率成正比

2.公式:ε=n

3.定律的理解:

⑴磁通量、磁通量的变化量、磁通量的变化量率的区别Φ、ΔΦ、ΔΦ/Δt

⑵感应电动势的大小与磁通量的变化率成正比

⑶感应电动势的方向由楞次定律来判断

⑷感应电动势的不同表达式由磁通量的的因素决定:

当ΔΦ=ΔBScosθ则ε=ΔB/ΔtScosθ

当ΔΦ=BΔScosθ则ε=BΔS/Δtcosθ

当ΔΦ=BSΔ(cosθ)则ε=BSΔ(cosθ)/Δt

注意: 为B.S之间的夹角。

4、特例——导线切割磁感线时的感应电动势

用课件展示电路,闭合电路一部分导体ab处于匀强磁场中,磁感应强度为B,ab的长度为L,以速度v匀速切割磁感线,求产生的感应电动势?(课件展示)

解析:设在Δt时间内导体棒由原来的位置运动到a1b1,这时线框面积的变化量为

ΔS=LvΔt

穿过闭合电路磁通量的变化量为

ΔΦ=BΔS=BLvΔt

据法拉第电磁感应定律,得

E= =BLv

这是导线切割磁感线时的感应电动势计算更简捷公式,需要理解

(1)B,L,V两两垂直

(2)导线的长度L应为有效切割长度

(3)导线运动方向和磁感线平行时,E=0

(4)速度V为平均值(瞬时值),E就为平均值(瞬时值)

问题:当导体的运动方向跟磁感线方向有一个夹角θ,感应电动势可用上面的公式计算吗?

用课件展示如图所示电路,闭合电路的一部分导体处于匀强磁场中,导体棒以v斜向切割磁感线,求产生的感应电动势。

解析:可以把速度v分解为两个分量:垂直于磁感线的分量v1=vsinθ和平行于磁感线的分量v2=vcosθ。后者不切割磁感线,不产生感应电动势。前者切割磁感线,产生的感应电动势为

E=BLv1=BLvsinθ

强调:在国际单位制中,上式中B、L、v的单位分别是特斯拉(T)、米(m)、米每秒(m/s),θ指v与B的夹角。

5、公式比较

与功率的两个公式比较得出E=ΔΦ/Δt:求平均电动势

E=BLV : v为瞬时值时求瞬时电动势,v为平均值时求平均电动势

课堂练习:

例题1:下列说法正确的是( D )

A、线圈中磁通量变化越大,线圈中产生的感应电动势一定越大

B、线圈中的磁通量越大,线圈中产生的感应电动势一定越大

C、线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大

D、线圈中磁通量变化得越快,线圈中产生的感应电动势越大

例题2:一个匝数为100、面积为10cm2的线圈垂直磁场放置,在0. 5s内穿过它的磁场从1T增加到9T。求线圈中的感应电动势。

解:由电磁感应定律可得E=nΔΦ/Δt①

ΔΦ= ΔB×S②

由① ②联立可得E=n ΔB×S/Δt

代如数值可得E=1.6V

例题3、在磁感强度为0.1T的匀强磁场中有一个与之垂直的金属框ABCD,框电阻不计,上面接一个长0.1m的可滑动的金属丝ab,已知金属丝质量为0.2g,电阻R=0.2Ω,不计阻力,求金属丝ab匀速下落时的速度。(4m/s)

问1:将上题的框架竖直倒放,使框平面放成与水平成30°角,不计阻力,B垂直于框平面,求v ?

答案:(2m/s)

问2:上题中若ab框间有摩擦阻力,且μ=0.2,求v ?

答案:(1.3m/s)

问3:若不计摩擦,而将B方向改为竖直向上,求v ?

答案:(2.67m/s)

问4:若此时再加摩擦μ=0.2,求v ?

答案:(1.6m/s)

【课堂小结】

1、让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。

2、认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。

3、让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。

【布置作业】选修3-2课本第16页“思考与讨论”

课后作业:第17页1、2、3、5题

【课后反思】

让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本上总

结,然后请同学评价黑板上的小结内容。让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架,把书本知识转化为自己的知识,让学生有收获成功感。

本节课,重点是理解法拉第电磁感应定律,不要过多的进行训练,不能急于求成,应该循序渐进.

高三物理教案:《电磁感应中的力学问题》教学设计


一名优秀的教师在教学方面无论做什么事都有计划和准备,教师要准备好教案,这是每个教师都不可缺少的。教案可以让学生们能够在上课时充分理解所教内容,帮助教师掌握上课时的教学节奏。那么怎么才能写出优秀的教案呢?下面是小编精心为您整理的“高三物理教案:《电磁感应中的力学问题》教学设计”,但愿对您的学习工作带来帮助。

本文题目:高三物理教案:电磁感应中的力学问题

【知识要点回顾】

1.基本思路

①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;

②求回路电流;

③分析导体受力情况(包含安培力,用左手定则确定其方向);

④列出动力学方程或平衡方程并求解.

2. 动态问题分析

(1)由于安培力和导体中的电流、运动速度均有关,所以对磁场中运动导体进行动态分析十分必要,当磁场中导体受安培力发生变化时,导致导体受到的合外力发生变化,进而导致加速度、速度等发生变化;反之,由于运动状态的变化又引起感应电流、安培力、合外力的变化,这样可能使导体达到稳定状态.

(2)思考路线:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→最终明确导体达到何种稳定运动状态.分析时,要画好受力图,注意抓住a=0时速度v达到最值的特点.

【要点讲练】

[例1]如图所示,在一均匀磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则( )

A.ef将减速向右运动,但不是匀减速

B.ef将匀减速向右运动,最后停止

C.ef将匀速向右运动

D.ef将往返运动

[例2]如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为??的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.

(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.

(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;

(3)求在下滑过程中,ab杆可以达到的速度最大值.

[例3]如图所示,两条互相平行的光滑导轨位于水平面内,距离为l=0.2m,在导轨的一端接有阻值为R=0.5Ω的电阻,在x≥0处有一水平面垂直的均匀磁场,磁感应强度B=0.5T.一质量为m=0.1kg的金属直杆垂直放置在导轨上,并以v0=2m/s的初速度进入磁场,在安培力和一垂直于直杆的水平外力F的共同作用下做匀变速直线运动,加速度大小为a=2m/s2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且连接良好.求:

(1)电流为零时金属杆所处的位置;

(2)电流为最大值的一半时施加在金属杆上外力F的大小和方向;

(3)保持其他条件不变,而初速度v0取不同值,求开始时F的方向与初速度v0取得的关系.

[例4]如图所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d 为0.5米,左端通过导线与阻值为2欧姆的电阻R连接,右端通过导线与阻值为4欧姆的小灯泡L连接;在CDEF矩形区域内有竖直向上均匀磁场,CE长为2米,CDEF区域内磁场的磁感应强度B如图所示随时间t变化;在t=0s时,一阻值为2欧姆的金属棒在恒力F作用下由静止从AB位置沿导轨向右运动,当金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化.求:

(1)通过的小灯泡的电流强度;

(2)恒力F的大小;

(3)金属棒的质量.

例5.如图所示,有两根和水平方向成.角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为及一根质量为m的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则 ( )

A.如果B增大,vm将变大

B.如果α变大,vm将变大

C.如果R变大,vm将变大

D.如果m变小,vm将变大

例6.如图所示,A线圈接一灵敏电流计,B线框放在匀强磁场中,B线框的电阻不计,具有一定电阻的导体棒可沿线框无摩擦滑动,今用一恒力F向右拉CD由静止开始运动,B线框足够长,则通过电流计中的电流方向和大小变化是( )

A.G中电流向上,强度逐渐增强

B.G中电流向下,强度逐渐增强

C.G中电流向上,强度逐渐减弱,最后为零

D.G中电流向下,强度逐渐减弱,最后为零

例7.如图所示,一边长为L的正方形闭合导线框,下落中穿过一宽度为d(d>L)的匀强磁场区,设导线框在穿过磁场区的过程中,不计空气阻力,它的上下两边保持水平,线框平面始终与磁场方向垂直做加速运动,若线框在位置Ⅰ、Ⅱ、Ⅲ时,其加速度a1,a2,a3的方向均竖直向下,则( )

A.a1=a3

B.a1=a3

C.a1

D.a3

例8.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成θ=37o角,下端连接阻值为R的电阻,匀强磁场方向与导轨平面垂直,质量为0.2kg,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.

(1)求金属棒沿导轨由静止开始下滑时的加速度大小;

(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;

(3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g=10m/s2,sin37o=0.6,cos37o=0.8)

高二物理教案:电磁感应现象


高二物理教案:电磁感应现象

教学目标
知识目标
1、知道磁通量的定义,公式的适用条件,会用这一公式进行简单的计算.
2、知道什么是电磁感应现象.
3、理解“不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生”.
4、知道能量守恒定律依然适用于电磁感应现象.

能力目标
1、通过实验的观察和分析,培养学生运用所学知识,分析问题的能力.

情感目标
1、学生认识“从个性中发现共性,再从共性中理解个性,从现象认识本质以及事物有普遍联系的辨证唯物主义观点.

教学建议

关于电磁感应现象的教学分析
1.电磁感应现象
利用磁场产生电流的现象叫做电磁感应产生的电流叫做感应电流。
2.产生感应电流的条件
①当闭合电路的一部分导体在磁场里做切割磁感线的运动时,电路中产生了感应电流。
②当磁体相对静止的闭合电路运动时,电路中产生了感应电流.
③当磁体和闭合电路都保持静止,而使穿过闭合电路的磁通量发生改变时,电路中产生了感应电流.
其实上述①、②两种情况均可归结为穿过闭合电路的磁通量发生改变,所以,不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生.
3.电磁感应现象中的能量守恒
电磁感应现象中产生的电能不是凭空产生的,它们或者是其他形式的能转化为电能,或者是电能在不同电路中的转移,电磁感应现象遵循能量守恒定律.

教法建议
1、课本中得出结论后的思考与讨论,是一个进一步启发学生手脑并用、独立思考,全面认识电磁感应现象的题目,教师可根据学生实际情况引导学生思考和讨论.
2、本节课文的最后分析了两种情况下电磁感应现象中的能量转化,这不但能从能量的观点让学生对电磁感应有明确的认识,而且进一步强化了能量守恒定律的普遍意义.有条件的,可以由教师引导学生自行分析,以培养学生运用所学知识独立分析问题的能力.

教学重点和教学难点
教学重点:感应电流的产生条件是本节的教学重点,而正确理解感应电流的产生条件是本节教学的难点.由于学生在初中时已经接触过相关的电磁感应现象,因此在讲解电流的产生时可以让学生通过实验加深对现象的认识,如果条件允许可以让学生自己动手实验,并在教师引导下进行分组讨论,教师可以通过问题的设计来引导实验的进行,例如:对实验数据表格的设计以及相关问题的探讨,让学生明白感应电流产生的条件.正确理解感应电流产生的条件.

电磁感应现象教学设计方案

教学目的:

1、知道磁通量的定义,知道磁通量的国际单位,知道公式的适用条件,会用公式计算.

2、启发学生观察实验现象,从中分析归纳通过磁场产生电流的条件.

3、通过实验的观察和分析,培养学生运用所学知识,分析问题的能力.

教学重点:感应电流的产生条件

教学难点:正确理解感应电流的产生条件.

教学仪器:电池组,电键,导线,大磁针,矩形线圈,碲形磁铁,条形磁铁,原副线圈,演示用电流表等.

教学过程:

一、教学引入:

在磁可否生电这个问题上,英国物理学家法拉第坚信,电与磁决不孤立,有着密切的联系.为此,他做了许多实验,把导线放在各种磁场中想得到电流需要一定的条件,他以坚韧不拔的意志历时10年,终于找到了这个条件,从而开辟了物理学又一崭新天地.

电磁感应现象:

二、教学内容

1、磁通量()

复习:磁感应强度的概念

引入:教师:我们知道,磁场的强弱(即磁感应强度)可以用磁感线的疏密来表示.如果一个面积为的面垂直一个磁感应强度为的匀强磁场放置,则穿过这个面的磁感线的条数就是确定的.我们把与的乘积叫做穿过这个面的磁通量.

(1)定义:面积为,垂直匀强磁场放置,则与乘积,叫做穿过这个面的磁通量,用Φ表示.

(2)公式:

(3)单位:韦伯(Wb)1Wb=1T·m2

磁通量就是表示穿过这个面的磁感线条数.

注意强调:

①只要知道匀强磁场的磁感应强度和所讨论面的面积,在面与磁场方向垂直的条件下(不垂直可将面积做垂直磁场方向上的投影.)磁通量是表示穿过讨论面的磁感线条数的多少.在今后的应用中往往根据穿过面的净磁感线条数的多少定性判断穿过该面的磁通量的大小.如果用公式来计算磁通量,但是只适合于匀强磁场.

②磁通量是标量,但是有正负之分,磁感线穿过某一个平面,要注意是从哪一面穿入,哪一面穿出.

2、电磁感应现象:

内容引入:奥斯特实验架起了一座连通电和磁的桥梁,此后人们对电能生磁已深信不疑,但磁能否生电呢?

在磁可否生电这个问题上,英国物理学家法拉第坚信,电与磁决不孤立,有着密切的联系.为此,他做了许多实验,把导线放在各种磁场中想得到电流需要一定的条件,他以坚韧不拔的意志历时10年,终于找到了这个条件,从而开辟了物理学又一崭新天地.

3、实验演示

实验1:学生实验——导体在磁场中切割磁力线的运动

观察现象:AB做切割磁感线运动,可见电流表指针偏转.

学生得到初步结论:当闭合回路中的部分导体做切割磁感线的运动时,电路中有了电流.

现象分析:如图1导体不切割磁力线时,电路中没有电流;而切割磁力线时闭合电路中有电流.回忆磁通量定义(师生讨论)对闭合回路而言,所处磁场未变,仅因为AB的运动使回路在磁场中部分面积变了,使穿过回路的磁通变化,故回路中产生了电流.

设问:那么在其它情况下磁通变化是否也会产生感应电流呢?

实验2:演示实验——条形磁铁插入线圈

观察提问:

A、条形磁铁插入或取出时,可见电流表的指针偏转.

B、磁铁与线圈相对静止时,可见电流表指针不偏转.

现象分析:(师生讨论)对线圈回路,当线圈与磁铁有沿轴线的相对运动时,所处磁场因磁铁的远离和靠近而变化,而未变,故穿过线圈的磁通变化,产生感应电流,而当磁铁不动时,线圈处,不变,故无感应电流.

实验3:演示实验——关于原副线圈的实验演示

实验观察:移动变阻器滑片(或通断开关),电流表指针偏转.当A中电流稳定时,电流表指针不偏转.

现象分析:对线圈,滑片移动或开关通断,引起A中电流变,则磁场变,穿过B的磁通变,故B中产生感应电流.当A中电流稳定时,磁场不变,磁通不变,则B中无感应电流.

教师总结:不同的实验,其共同处在于:只要穿过闭合回路的磁通量的变化,不管引起磁通量变化的原因是什么,闭合电路中都有感应电流产生.

结论:

无论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路就有电流产生,这种利用磁场产生电流的现象叫电磁感应,产生的电流叫感应电流.

电磁感应现象中的能量转化:

引导学生讨论分析上述三个实验中能量的转化情况.

3、例题讲解

4、教师总结:

能量守恒定律是一个普遍定律,同样适合于电磁感应现象.电磁感应现象中产生的电能不是凭空产生的,它们或者是其它形式的能转化为电能,或者是电能在不同电路中的转移.

5、布置作业